

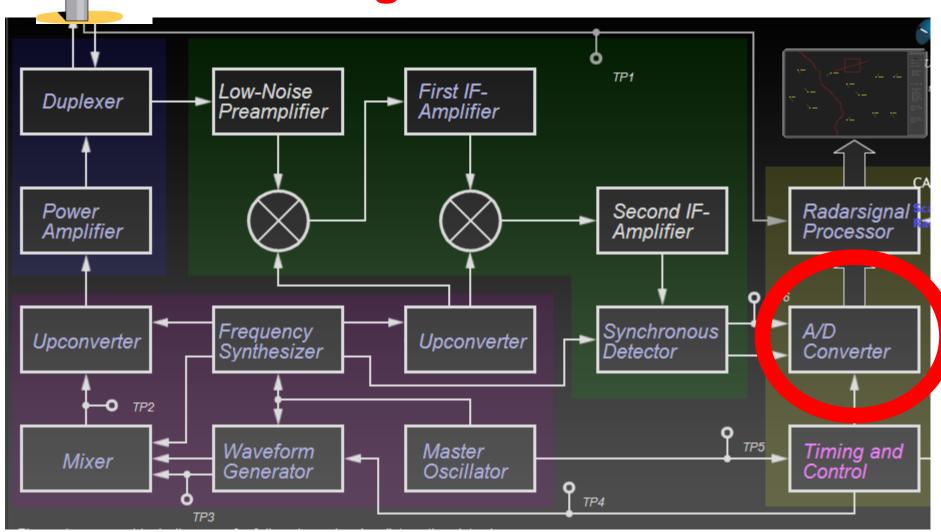
TI Solutions for Industrial Radar

Introduction

Purpose

To introduce TI's ADC solutions for Radar

Objective


- To discuss differences between baseband sampling vs high IF sampling
- To discuss TI's ADC solutions for each approach

Content

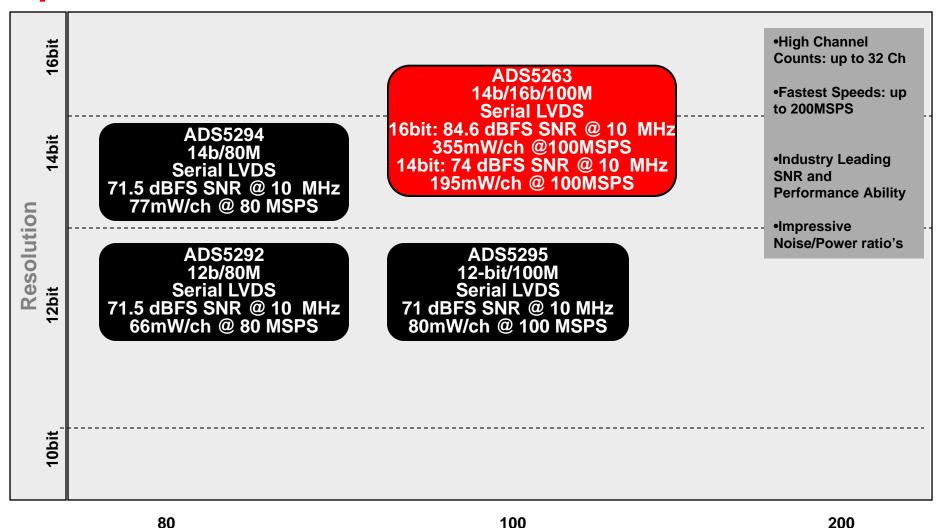
- Typical Radar Signal Chain
- ADC's for Basband Radar Sampling
- ADC's for High IF sampling

Radar Signal Chain

TI ADC's for Radar

- For phase array radars, baseband sampling with two mixing stages is common.
 - ADS529x or AFE58xx offer best in class noise with industry leading power levels for multichannel systems
 - 4, 8, and 16 Ch offerings
 - High speed up to 200MSPS
 - Best power/noise optimization in the industry
- If power is not a major concern and the number of channels is relatively low a high IF sampling would eliminate one mixing stage and increase performance.
 - ADS54xx or ADC12Dxxxxx offer unmatched speed performance
 - 1 or 2 ch offerings
 - High speed up to 3.6GHz
 - Unmatched high speed performance

ADC's for BaseBand Radar Sampling



ADS52xx – Multi-channel, High Speed, Lower quad

power ADC's for BaseBand Radar

octal

16-ch

MSPS

Instruments

ADS5295:

8 Channel, 12 Bit, 100MSPS High Performance ADC

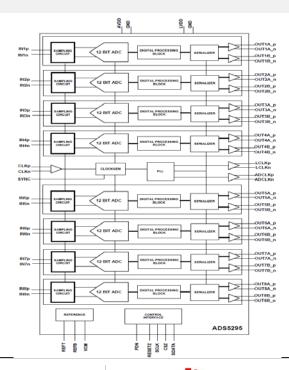
Features

- Low Noise/Power Performance
 - 71 dBFS SNR, 85 dBc SFDR at 10 MHz/100MSPS
 - 80 mW/ch@100MSPS
- Digital Processing Block
 - Integrated Decimation Filters by 2,4,8
 - Programmable IIR High Pass Filter
 - Low frequency noise suppression mode
 - Programmable Digital Gain: 0 dB to 12 dB
- Selectable Serial LVDS ADC output:
 - One-Wire Interface: Up to 80 MSPS Sample Rate
 - Two-Wire Interface: Up to 100 MSPS Sample Rate
- 1.8V Supply

Applications

- High channel count data acquisition
- Military Radar
- High speed communication applications

Samples: Now


EVM: Now

Production: Released

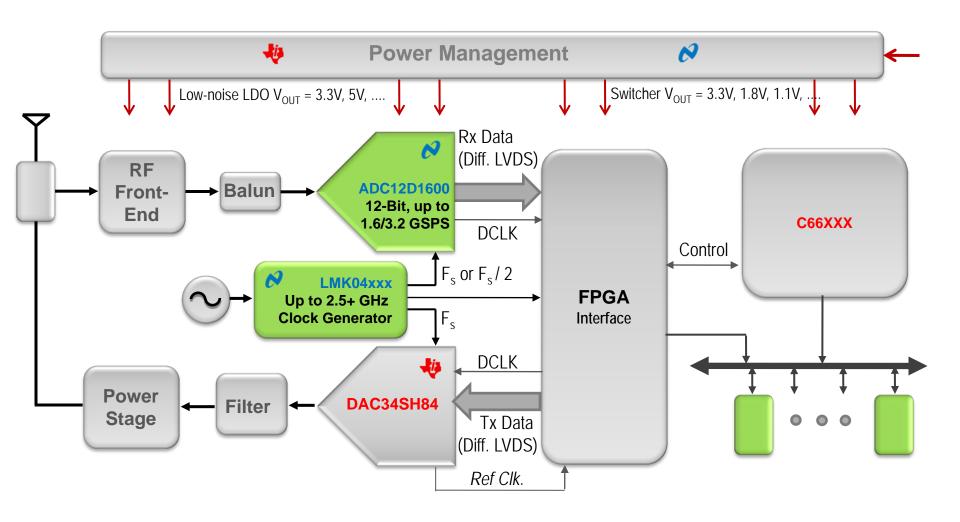
Package: 12x12 mm TQFP-80

Benefits

- Optimized for high performance and high channel count data acquisition systems
- Minimizes harmonic interference errors
- Minimizes DC offset errors
- Enables the suppression of noise at low frequencies and improves SNR in the 1MHz band near DC by about 3dB

TI ADC's for Radar

- For phase array radars, baseband sampling with two mixing stages is common.
 - ADS529x or AFE58xx offer best in class noise with industry leading power levels for multichannel systems
 - 4, 8, and 16 Ch offerings
 - High speed up to 200MSPS
 - Best power/noise optimization in the industry
- If power is not a major concern and the number of channels is relatively low a high IF sampling would eliminate one mixing stage and increase performance.
 - ADS54xx or ADC12Dxxxx offer unmatched speed performance
 - 1 or 2 ch offerings
 - High speed up to 3.6GHz
 - Unmatched high speed performance



ADC's for High IF Radar Sampling

RADAR For High IF sampling

High IF Sampling ADC's for Radar

Product	Resolution	Speed	Multichannel	Power	SFDR	SNR
ADC12D1800/16						
00/1000/800/500		3.6/3.2/2.0/1.		4.4/4.0/3.5/2.	68/68/71/73/	58.6/59/60.1/
RF	12B	6/1.0 GSPS	2	5/2.0W	74 dB	60.2/60.4 dB
ADC12D2000RF	12B	-	2	4.4W	68dB	56.5dBFS
					75dBc @	59.1dB @
ADS5400	12B	1.0 GSPS	1	2.2W	250MHz	250MHz
					80dBc @450	63dBFS @
ADS5402	12B	800MSPS	2	1W/Ch	MHz	450MHz
					89dbFS @	76dBFS
ADC16DV160	16B	160MSPS	2	650mW/Ch	197MHz	@197MHz

Summary

- For phase array radars, baseband sampling with two mixing stages is common.
- If power is not a major concern and the number of channels is relatively low a high IF sampling would eliminate one mixing stage and increase performance.
- TI has a broad ADC portfolio to cover both sampling approaches
- To learn more about the ADS5295 please visit <u>www.ti.com/product/ADS5295</u>
- To learn more about the ADC12D1600 please visit www.ti.com/product/ADC12D1600

