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Editor’s note
Edge AI and machine learning have transformed the way 
systems and devices process data, enabling real-time 
decision-making at the source rather than relying on 
remote servers. As engineers navigate the rapid evolution 
of technology, understanding and applying these concepts 
have become crucial for developing intelligent, autonomous 
systems across a range of industries, from manufacturing to 
healthcare. 

Edge AI refers to the deployment of artificial intelligence 
algorithms on Edge devices, which are located at the 
periphery of a network, close to the data source. These 
devices are equipped with enough processing power to 
handle AI computations locally. This eliminates the need 
to send large volumes of data to a centralized Cloud for 
analysis, drastically reducing latency, bandwidth usage, and 
energy consumption. In many industrial applications, where 
immediate responses are critical, these advantages make 
Edge AI an attractive option.

Machine learning is the driving force behind the AI revolution, 
empowering systems to learn from data and improve their 
performance over time without explicit programming. When 
combined with Edge computing, machine learning enables 
the creation of systems that can operate autonomously, 
make decisions in real time, and adapt to changing 
conditions on the fly. This combination is already being 
applied in predictive maintenance, robotics, autonomous 
vehicles, and industrial automation.

As the demand for intelligent, connected devices continues 
to rise, engineers must stay ahead of the curve by embracing 
Edge AI and machine learning. These technologies are 
no longer confined to large-scale enterprises with vast 
resources but are increasingly accessible to a wider range 
of industries and applications. By understanding how to 
implement and optimise Edge AI and machine learning, 
engineers can create more responsive, efficient, and secure 
systems that will drive the next wave of innovation.

For more information,  
please check out our website at  
www.digikey.com/automation.
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Artificial Intelligence (AI) is 
revolutionizing various industries 
by providing transformative 
solutions that significantly enhance 
efficiency, accuracy, and the ability 
to make informed decisions. In this 
landscape, the concept of Edge 
AI – processing AI algorithms on 
devices located at the Edge of a 
network – has emerged as a game-
changing approach. It allows for 
real-time data processing, reduced 
latency, improved data privacy, 
and autonomy in decision-making, 
especially critical in sectors like 
healthcare, robotics, and industrial 
automation.

iWave, a pioneering force in 
embedded systems engineering, is 
at the forefront of this revolution, 
offering embedded platforms 
designed to push the boundaries of 
AI at the Edge. These platforms are 
specifically tailored for applications 
requiring high-performance 
computing and sophisticated AI/

ML capabilities, such as media 
processing, robotics, and visual 
computing.

Introducing iW-RainboW-
G58M: the next generation 
of AI-infused FPGAs

In a significant advancement for 
the embedded systems market, 
iWave is thrilled to introduce the 
iW-RainboW-G58M System on 
Module (SoM) (Figure 1), powered 
by the Intel Agilex 5 FPGA. This 
is the first FPGA to feature AI 
capabilities integrated directly into 
its fabric, marking a new era in 
FPGA technology. The iW-RainboW-
G58M is meticulously engineered 
for applications demanding 
high-performance, low-latency 
processing, and custom logic 
implementation with embedded 
AI/ML support, making it an ideal 
choice for industries such as 
medical imaging, robotics, and 
industrial automation.

The iW-RainboW-G58M SoM is 
compact, measuring just 60mm 
x 70mm, yet it is packed with 
powerful features. It supports 
the Intel Agilex 5 FPGA and 
SoC E-Series family in the B32A 
package, available in two distinct 
device variants to cater to a range 
of application needs:

	■ Group A: A5E 
065A/052A/043A/028A/013A 
SoC FPGA – These variants 
offer higher performance and 
are suitable for applications 
requiring more complex 
processing capabilities

	■ Group B: A5E 065B/052B/043B/ 
028B/013B/008B SoC FPGA 
– These variants provide cost-
effective solutions for less 
demanding tasks, ensuring 
flexibility in design and 
implementation

The combination of these options 
allows developers to select the 
most appropriate FPGA variant for 
their specific application, balancing 
performance, power consumption, 
and cost.

Harnessing the full potential 
of Intel Agilex 5 FPGAs for 
Edge AI

Intel’s Agilex 5 FPGAs and SoCs 
represent a significant leap forward 
in FPGA technology, especially 
in the context of AI and machine 
learning applications at the Edge. 
The Agilex 5 series builds on Intel’s 
legacy of AI-optimized FPGAs, 
introducing the industry’s first AI 
tensor block in a mid-range FPGA. 
This block is specifically designed 
to accelerate AI workloads, making 
these FPGAs a perfect fit for edge 
AI applications where real-time 
processing and decision-making 
are critical.

A key feature of the Agilex 5 FPGA 
is its asymmetric applications 
processor system, which includes 
dual Arm Cortex-A76 cores and 
dual Cortex-A55 cores. This 
configuration allows the FPGA to 
deliver exceptional processing 
power while optimizing power 
efficiency, a crucial factor in Edge 

AI development potential 
with the Agilex 5 system 
on module

Written by:  
Tawfeeq Ahmad

Figure 1. The iWave iW-RainboW-G58M 
SoM, powered by the Intel Agilex 5 
FPGA which is the first FPGA to feature 
directly integrated AI capabilities.  
Image source: iWave

https://www.digikey.com/en/supplier-centers/intel
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computing environments where 
power consumption must be 
minimized without compromising 
performance.

The Agilex 5 FPGA also includes 
enhanced Digital Signal Processing 
(DSP) capabilities, integrated 
with an AI tensor block. This 
combination allows the FPGA to 
handle complex AI tasks such 
as deep learning inference, 
image processing, and predictive 
analytics with greater efficiency 
and accuracy. Moreover, the 
FPGA’s advanced connectivity 
features, including high-speed GTS 
transceivers that support data 
rates up to 28.1 Gbps, PCI Express* 
(PCIe*) 4.0 × 8, and outputs for 
DisplayPort and HDMI, make it a 
versatile solution for a wide range 
of applications.

Comprehensive AI/ML 
software ecosystem: 
accelerating development

The iW-RainboW-G58M SoM is 
complemented by a comprehensive 
software ecosystem that 
significantly accelerates AI and 
machine learning development. 
Central to this ecosystem is the 
support for popular AI frameworks 
such as TensorFlow and PyTorch, 
ensuring that developers can 
leverage these familiar platforms 
to create sophisticated AI models 
without steep learning curves.

A critical component of this 
ecosystem is the OpenVINO 
toolkit. This open-source toolkit is 
designed to optimize deep learning 
models for inference on a variety of 
hardware architectures, including 

CPUs, GPUs, and FPGAs. By using 
the OpenVINO toolkit, developers 
can ensure that their AI models are 
not only optimized for performance 
but are also highly portable across 
different hardware platforms, 
allowing for greater flexibility in 
deployment.

Additionally, the Intel FPGA AI Suite 
plays a pivotal role in simplifying 
the development process. This 
suite is designed with ease of use 
in mind, enabling FPGA designers, 
machine learning engineers, and 
software developers to create AI 
platforms that are optimized for 
FPGA architectures. By integrating 
with industry-standard tools such 
as TensorFlow, PyTorch, and the 
OpenVINO toolkit, the Intel FPGA 
AI Suite allows developers to 
speed up the development process 

AI development potential with the Agilex 5 system on module

while maintaining a high degree of 
reliability and performance in their 
AI solutions.

The suite also integrates 
seamlessly with the Intel Quartus 
Prime FPGA design software, a 
powerful tool that supports the 
design, analysis, and optimization 
of FPGA-based systems. This 
integration ensures that developers 
have access to a robust and proven 
workflow, reducing time to market 
and enhancing the overall reliability 
of their AI applications.

Cloud AI vs. Edge AI: a 
comparative analysis

As AI continues to evolve, the 
distinction between Cloud AI and 
Edge AI becomes increasingly 
important. Cloud AI, which relies on 
the vast computational resources 
of remote data centers, offers high 
scalability and the ability to process 
large volumes of data. However, 
this approach often comes with 
higher latency and potential 
security concerns due to the need 
for data transmission over the 
internet.

On the other hand, Edge AI offers 
significant advantages in scenarios 
where real-time processing, low 
latency, and enhanced data privacy 
are critical. By processing data 
locally on the device, Edge AI 
eliminates the need for constant 
communication with the cloud, 
reducing latency and improving 
the responsiveness of AI systems. 

This is particularly important in 
applications such as autonomous 
vehicles, industrial automation, 
and healthcare, where delays in 
decision-making can have serious 
consequences.

Moreover, Edge AI contributes to 
data privacy by keeping sensitive 
information on the local device, 
reducing the risk of data breaches 
associated with cloud-based 
processing. The hybrid approach, 
where edge devices perform 
initial data processing before 
transmitting it to the cloud for more 
complex analysis, is becoming 
increasingly popular. This method 
combines the strengths of both 
Edge AI and Cloud AI, allowing 
for efficient resource utilization, 
enhanced security, and improved 
system performance.

Ensuring longevity and 
comprehensive support: 
iWave’s commitment to 
customers

One of iWave’s key commitments 
is to ensure the long-term 
availability of its products. The 
company’s product longevity 
program guarantees that its 
System on Modules (SoMs) are 
available for extended periods, 
often exceeding 10 years. This is 
especially important for industries 
like medical devices, aerospace, 
and industrial automation, where 
product lifecycles are typically 
long, and consistent component 

availability is critical.

In addition to longevity, iWave 
provides extensive technical 
support throughout the product 
development process. This support 
includes ODM (Original Design 
Manufacturer) services, such 
as carrier card design, thermal 
simulation, and system-level 
design, allowing customers to 
focus on their core competencies 
while iWave handles the complex 
aspects of hardware design and 
integration.

iWave’s commitment to customer 
success is further demonstrated 
by the provision of comprehensive 
evaluation kits for its SoMs. 
These kits come with complete 
user documentation, software 
drivers, and a board support 
package, enabling customers to 
rapidly evaluate and prototype 
their designs. By offering these 
resources, iWave helps customers 
reduce development time and bring 
their products to market faster.

Summary

iWave’s iW-RainboW-G58M SoM, 
with the Intel Agilex 5 FPGA that 
features integrated AI capabilities, 
is carefully engineered for 
high-performance, low-latency 
processing, and custom logic 
implementation with embedded 
AI/ML support applications. 
This makes it a good choice for 
industries such as medical imaging, 
robotics, and industrial automation.
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Machine learning (ML) has been 
all the rage in server and mobile 
applications for years, but it has 
now migrated and become critical 
on Edge devices. Given that Edge 
devices need to be energy efficient, 
developers need to learn and 
understand how to deploy ML 
models to microcontroller-based 
systems. ML models running on a 
microcontroller are often referred to 
as tinyML. Unfortunately, deploying 
a model to a microcontroller is not 

a trivial endeavor. Still, it is 
getting easier, and developers 
without any specialized 
training will find that they can 
do so in a timely manner.

This article explores how 
embedded developers 
can get started 
with ML using 
STMicroelectronics’ 
STM32 
microcontrollers. To 
do so, it shows how 
to create a ‘Hello 
World’ application 
by converting a 
TensorFlow Lite for 
Microcontrollers 
model for use in 
STM32CubeIDE using 
X-CUBE-AI.

The next use case for tinyML that 
many embedded developers are 
interested in is image recognition. 
The microcontroller captures 
images from a camera, which are 
then fed into a pre-trained model. 
The model can discern what is in 
the image. For example, one might 
be able to determine if there is 
a cat, a dog, a fish, and so forth. 
A great example of how image 
recognition is used at the edge is in 
video doorbells. The video doorbell 
can often detect if a human is 
present at the door or whether a 
package has been left.

One last use case with high 
popularity is using tinyML 
for predictive maintenance. 
Predictive maintenance uses 
ML to predict equipment states 
based on abnormality detection, 
classification algorithms, and 
predictive models. Again, plenty of 
applications are available, ranging 
from HVAC systems to factory floor 
equipment.

While the above three use cases are 
currently popular for tinyML, there 
are undoubtedly many potential 
use cases that developers can find. 

How to run a ‘Hello World’ 
machine learning model 
on STM32 microcontrollers
Written by: Jacob Beningo

Introduction to tinyML use 
cases

TinyML is a growing field that 
brings the power of ML to resource 
and power-constrained devices 
like microcontrollers, usually using 
deep neural networks. These 
microcontroller devices can then 
run the ML model and perform 
valuable work at the edge. There 
are several use cases where tinyML 
is now quite interesting.

The first use case, which is seen 
in many mobile devices and home 
automation equipment, is keyword 
spotting. Keyword spotting allows 
the embedded device to use a 
microphone to capture speech 
and detect pretrained keywords. 
The tinyML model uses a time-
series input that represents the 
speech and converts it to speech 
features, usually a spectrogram. 
The spectrogram contains 
frequency information over time. 
The spectrogram is then fed into 
a neural network trained to detect 
specific words, and the result is a 
probability that a particular word 
is detected. Figure 1 shows an 
example of what this process looks 
like.

Figure 1. Keyword spotting is an interesting use case for tinyML. The input 
speech is converted to a spectrogram and then fed into a trained neural 
network to determine if a pretrained word is present. Image source: Arm

https://www.digikey.com/en/supplier-centers/stmicroelectronics
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.digikey.com/en/supplier-centers/arm
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Here’s a quick list:
	■ Gesture classification
	■ Anomaly detection
	■ Analog meter reader
	■ Guidance and control (GNC)
	■ Package detection

No matter the use case, the best 
way to start getting familiar with 
tinyML is with a ‘Hello World’ 
application, which helps developers 
learn and understand the basic 
process they will follow to get a 
minimal system up and running. 
There are five necessary steps to 
run a tinyML model on an STM32 
microcontroller:

1.	 Capture data

2.	 Label data

3.	 Train the neural network

4.	 Convert the model

5.	 Run the model on the 
microcontroller

Capturing, labelling, and 
training a ‘Hello World’ 
model

Developers generally have many 
options available for how they will 
capture and label the data needed 
to train their model. First, there are 
a lot of online training databases. 
Developers can search for data 
that someone has collected and 
labelled. For example, for basic 
image detection, there’s CIFAR-10 
or ImageNet. To train a model to 
detect smiles in photos, there’s an 
image collection for that too. Online 

data repositories are 
clearly a great place to 
start.

If the required data 
hasn’t already been 
made publicly available 
on the Internet, then 
another option is for 
developers to generate 
their own data. Matlab 

or some other tool can be used to 
generate the datasets. If automatic 
data generation is not an option, 
it can be done manually. Finally, if 
this all seems too time-consuming, 
there are some datasets available 
for purchase, also on the Internet. 
Collecting the data is often the 
most exciting and interesting 
option, but it is also the most work.

The ‘Hello World’ example being 
explored here shows how to train 
a model to generate a sine wave 
and deploy it to an STM32. The 
example was put together by Pete 

Warden and Daniel 
Situnayake as part of 
their work at Google 
on TensorFlow Lite 
for Microcontrollers. 
This makes the job 
easier because they 
have put together a 
simple, public tutorial 
on capturing, labelling, 
and training the model. 
It can be found on 
Github here; once there, 
developers should 
click the ‘Run in Google 

Colab’ button. Google Colab, short 
for Google Colaboratory, allows 
developers to write and execute 
Python in their browser with zero 
configuration and provides free 
access to Google GPUs.

The output from walking through 
the training example will include 
two different model files; a model.
tflite TensorFlow model that is 
quantized for microcontrollers and 
a model_no_quant.tflite model that 
is not quantized. The quantization 
indicates how the model activations 
and bias are stored numerically. 
The quantized version produces a 
smaller model that is more suited 
to a microcontroller. For those 

curious readers, the trained model 
results versus actual sine wave 
results can be seen in Figure 2. The 
output of the model is in red. The 
sine wave output isn’t perfect, but 
it works well enough for a ‘Hello 
World’ program.

Selecting a development 
board

Before looking at how to 
convert the TensorFlow model 
to run on a microcontroller, a 
microcontroller needs to be 
selected for deployment in the 
model. This article will focus on 
STM32 microcontrollers because 
STMicroelectronics has many 
tinyML/ML tools that work well for 
converting and running models. In 
addition, STMicroelectronics has 
a wide variety of parts compatible 
with their ML tools (Figure 3).

If one of these boards are lying 
around the office, it’s perfect for 
getting the ‘Hello World’ application 
up and running. However, for those 
interested in going beyond this 
example and getting into gesture 
control or keyword spotting, opt 
for the STM32 B-L4S5I-IOT01A 

Discovery IoT Node (Figure 4).

This board has an Arm Cortex-M4 
processor based on the STM32L4+ 
series. The processor has 2 
megabytes (Mbytes) of flash 
memory and 640 kilobytes (Kbytes) 
of RAM, providing plenty of space 
for tinyML models. The module 
is adaptable for tinyML use case 
experiments because it also has 
STMicroelectronics’ MP34DT01 
microelectromechanical systems 
(MEMS) microphone that can 
be used for keyword spotting 
application development. In 
addition, the onboard LIS3MDLTR 
three-axis accelerometer, also from 
STMicroelectronics, can be used 
for tinyML-based gesture detection.

Converting and running 
the TensorFlow Lite model 
using STM32Cube.AI

Armed with a development board 
that can be used to run the tinyML 
model, developers can now start to 
convert the TensorFlow Lite model 
into something that can run on the 
microcontroller. The TensorFlow 
Lite model can run directly on the 
microcontroller, but it needs a 

runtime environment 
to process it.

When the model is run, 
a series of functions 
need to be performed. 
These functions start 
with collecting the 
sensor data, then 
filtering it, extracting 

 Figure 2. A comparison between 
TensorFlow model predictions for a sine 
wave versus the actual values. Image 
source: Beningo Embedded Group

Figure 3. Shown are the microcontrollers and the microprocessor unit (MPU) currently 
supported by the STMicroelectronics AI ecosystem. Image source: STMicroelectronics

Figure 4. The STM32 B-L4S5I-IOT01A 
Discovery IoT Node is an adaptable 
experimentation platform for tinyML 
due to its onboard Arm Cortex-M4 
processor, MEMS microphone, and 
three-axis accelerometer. Image 
source: STMicroelectronics

How to run a ‘Hello World’ machine learning model on STM32 microcontrollers

Figure 5. How data flows from sensors 
to the runtime and then to the output 
in a tinyML application. Image source: 
Beningo Embedded Group

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/hello_world/train/train_hello_world_model.ipynb
https://www.digikey.com/en/products/detail/stmicroelectronics/B-L4S5I-IOT01A/12395902
https://www.digikey.com/en/products/detail/stmicroelectronics/MP34DT01/3087727
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will give the developer the ability to 
select the model file they created 
and set the model parameters, 
as shown in Figure 7. An analyze 
button will also analyze the 
model and provide developers 
with RAM, ROM, and execution 
cycle information. It’s highly 
recommended that developers 
compare the Keras and TFLite 
model options. On the sine wave 
model example, which is small, 

for a full cycle results in the sine 
wave shown in Figure 9. It’s not 
perfect, but it is excellent for a 
first tinyML application. From here, 
developers could tie the output to a 
pulse width modulator (PWM) and 
generate the sine wave.

Tips and tricks for ML on 
embedded systems

Developers looking to get started 
with ML on microcontroller-
based systems will have quite a 
bit on their plate to get their first 
tinyML application up and running. 
However, there are several ‘tips 
and tricks’ to keep in mind that 
can simplify and speed up their 
development:

	■ Walk through the TensorFlow 
Lite for microcontrollers ‘Hello 
World’ example, including the 
Google Colab file. Take some 
time to adjust parameters and 
understand how they affect the 
trained model

	■ Use quantized models for 
microcontroller applications. The 
quantized model is compressed 
to work with uint8_t rather than 
32-bit floating-point numbers. As 
a result, the model will be smaller 

and execute faster
	■ Explore the additional examples 

in the TensorFlow Lite for 
Microcontrollers repository. 
Other examples include gesture 
detection and keyword detection

	■ Take the ‘Hello World’ example 
by connecting the model output 
to a PWM and a low-pass filter 
to see the resultant sine wave. 
Experiment with the runtime to 
increase and decrease the sine 
wave frequency

	■ Select a development board that 
includes ‘extra’ sensors that will 
allow for a wide range of ML 
applications to be tried

	■ As much fun as collecting data 
can be, it’s generally easier to 
purchase or use an open-source 
database to train the model

Developers who follow these ‘tips 
and tricks’ will save quite a bit of 
time and grief when securing their 
application.

Conclusion

ML has come to the network 
Edge, and resource-constrained 
microcontroller-based systems 
are a prime target. The latest tools 
allow ML models to be converted 
and optimized to run on real-time 
systems. As shown, getting a 
model up and running on an STM32 
development board is relatively 
easy, despite the complexities 
involved. While the discussion 
examined a simple model that 
generates a sine wave, far more 
complex models like gesture 
detection and keyword spotting are 
possible.

Figure 6. The X-CUBE-AI plug-in needs to be enabled using the application 
template for this example. Image source: Beningo Embedded Group

there won’t be a huge difference, 
but it is noticeable. The project 
can then be generated by clicking 
‘Generate code’.

 The code generator will initialize 
the project and build in the runtime 
environment for the tinyML model. 
However, by default, nothing is 
feeding the model. Developers need 
to add code to provide the model 
input values – x values – which the 
model will then interpret and use to 
generate the sine y values. A few 
pieces of code need to be added to 
the acquire_and_process_data and 
post_process functions, as shown 
in Figure 8.

At this point, the example is now 
ready to run. Note: add some 
printf statements to get the model 
output for quick verification. A fast 
compile and deployment results 
in the ‘Hello World’ tinyML model 
running. Pulling the model output 

the necessary features, and feeding 
it to the model. The model will 
spit out a result which can then be 
further filtered, and then – usually 
– some action is taken. Figure 5 
provides an overview of what this 
process looks like.

The X-CUBE-AI plug-in to 
STM32CubeMx provides the 
runtime environment to interpret 
the TensorFlow Lite model and 
offers alternative runtimes and 
conversion tools that developers 
can leverage. The X-CUBE-AI plug-
in is not enabled by default in a 
project. However, after creating 
a new project and initializing the 
board, under Software Packs-> 
Select Components, there is an 
option to enable the AI runtime. 
There are several options here; 
make sure that the Application 
template is used for this example, 
as shown in Figure 6.

Once X-CUBE-AI is enabled, an 
STMicroelectronics X-CUBE-
AI category will appear in the 
toolchain. Clicking on the category Figure 7. The analyze button will provide developers with RAM, ROM, and 

execution cycle information. Image source: Beningo Embedded Group

Figure 7. The analyze button will provide developers with RAM, ROM, and 
execution cycle information. Image source: Beningo Embedded Group

Figure 9. The ‘Hello World’ sine wave model output when running 
on the STM32. Image source: Beningo Embedded Group

How to run a ‘Hello World’ machine learning model on STM32 microcontrollers
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Written by: Jeff Shepard

How to use FPGA SoCs 
for secure and connected 
hard real-time systems

deterministic systems like artificial 
intelligence (AI) and machine 
learning (ML).

However, the integration of those 
diverse elements into a secure, 
connected, and deterministic 
system can be a challenging 
and time-consuming activity, 
as is laying out the high-speed 
interconnects for the various 

14

system elements. Designers need 
to include a memory management 
unit, memory protection unit, 
secure boot capability, and 
gigabit-class transceivers for 
high-speed connectivity. The 
design will need active and static 
power management and control of 
inrush currents. Some designs will 
require operation over the extended 
commercial temperature range of 
0°C to +100°C junction temperature 
(TJ), while systems in industrial 
environments will need to operate 
with TJ from -40°C to +100°C.

To address these and other 
challenges, designers can turn 
to FPGA system-on-chip (SoC) 
devices that combine low power 
consumption, thermal efficiency, 
and defense-grade security 

for smart, connected, and 
deterministic systems.

This article reviews the architecture 
of such an FPGA SoC and how 
it supports the efficient design 
of connected and deterministic 
systems. It then briefly presents the 
EEMBC CoreMark-Pro processing 
power versus power consumption 
benchmark, along with a view 
of the benchmark performance 
of a representative FPGA SoC. 
It looks at how security is baked 
into these FPGA SoCs and details 
exemplary FPGA SoCs from 
Microchip Technology, along with a 
development platform to accelerate 
the design process. It closes with 
a brief listing of expansion boards 
from MikroElektronika that can 
be used to implement a range of 

communications interfaces, as 
well as global navigation satellite 
system (GNSS) location capability.

SoCs built with an FPGA 
fabric

The ‘chip’ for this SoC is an FPGA 
fabric that contains the system 
elements, from the FPGA to the 
RISC-V MCU subsystem that’s built 
with hardened FPGA logic. The 
MCU subsystem includes a quad-
core RISC-V MCU cluster, a RISC-V 
monitor core, a system controller, 
and a deterministic Level 2 (L2) 
memory subsystem. The FPGA in 
these SoCs includes up to 460 K 
logic elements, up to 12.7 gigabit 
per second (Gbps) transceivers, 
and other input/output (I/O) blocks, 
including general purpose I/O 

 Figure 1. All the 
elements in this FPGA 
SoC, including the 
RISC-V subsystems, 
are implemented on 
the FPGA fabric. Image 
source: Microchip 
Technology

Field programmable gate 
arrays (FPGAs), Linux-capable 
RISC-V microcontroller unit 
(MCU) subsystems, advanced 
memory architectures, and high-
performance communications 
interfaces are important tools for 
designers. This is particularly true 
for designers of secure connected 
systems, safety-critical systems, 
and a wide range of hard real-time 

https://www.digikey.com/en/product-highlight/m/microchip-technology/polarfire-soc-fpgas
https://www.digikey.com/en/supplier-centers/microchip-technology
https://www.digikey.com/en/product-highlight/m/microchip-technology/mpfs-icicle-kit-es--polarfire-soc-fpga-icicle-kit
https://www.digikey.com/en/supplier-centers/mikroelektronika
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(GPIO) and Peripheral Component 
Interconnect Express (PCIe) 2. The 
overall architecture is designed 
for reliability. It includes single-
error correction and double-
error detection (SECDED) on all 
memories, differential power 
analysis (DPA), physical memory 
protection, and 128 kilobits (Kbits) 
of flash boot memory (Figure 1).

Microchip offers its Mi-V 
(pronounced ‘my five’) ecosystem 
of third-party tools and design 
resources to support the 
implementation of RISC-V systems. 
It’s built to speed the adoption 
of the RISC-V instruction set 
architecture (ISA) for hardened 
RISC-V cores and for RISC-V 
soft cores. Elements of the Mi-V 
ecosystem include access to:

	■ Intellectual property (IP) licenses
	■ Hardware
	■ Operating systems and 

middleware
	■ Debuggers, compilers, and 

design services

The hardened RISC-V MCUs in 

workloads include a linear algebra 
routine derived from LINPACK, a 
fast Fourier transform, a neural net 
algorithm for pattern evaluation, 
and an improved version of the 
Livermore loops benchmark. JPEG 
compression, an XML parser, ZIP 
compression, and a 256-bit secure 
hash algorithm (SHA-256) form the 
basis of the integer workloads.

The MPFSO95T models of these 
SoC FPGAs, like the MPFS095TL-
FCSG536E, can deliver up to 6,500 
Coremarks at 1.3 watts (Figure 3).

Security considerations

The safety-critical and hard 
real-time applications for these 
FPGA SoCs require strong 
security in addition to high 
energy efficiency and powerful 
processing capabilities. The 
basic security functions of these 
FPGA SoCs include differential 
power analysis (DPA) resistant 
bitstream programming, a true 
random number generator 

(TRNG), and a physically 
unclonable function 
(PUF). They also include 
standard and user-defined 
secure boot, physical 
memory protection that 
provides memory access 
restrictions related to 
the machine’s privilege 
state, including machine, 
supervisor, or user modes, 

and immunity from Meltdown and 
Spectre attacks.

Security begins with secure supply 
chain management, including the 
use of hardware security modules 
(HSMs) during wafer testing and 
packaging. The use of a 768-
byte digitally signed x.509 FPGA 
certificate embedded in every 
FPGA SoC adds to supply chain 
assurance.

Numerous on-chip tamper 
detectors are included in these 
FPGA SoCs to ensure secure and 
reliable operation. If tampering is 
detected, a tamper flag is issued 
that enables the system to respond 
as needed. Some of the available 
tamper detectors include:

	■ Voltage monitors
	■ Temperature sensors
	■ Clock glitch and clock frequency 

detectors
	■ JTAG active detector
	■ Mesh active detector

Security is further ensured with 
256-bit advanced encryption 
standard (AES-256) symmetric 
block cipher correlation power 
attack (CPA) countermeasures, 
integrated cryptographic digest 
capabilities to ensure data integrity, 
integrated PUF for key storage, 
and zeroization capabilities for 
the FPGA fabric and all on-chip 
memories.

How to use FPGA SoCs for secure and connected hard real-time systems

Figure 4. The automotive temperature MPFS250T-
1FCSG536T2 comes in a 16 x 16mm package with a 
ball count of 536 and a 0.5mm pitch. Image source: 
Microchip Technology

Figure 2. The RISC-V subsystem 
includes several processor and memory 
elements. Image source: Microchip 
Technology

Figure 3. The MPFS095T FPGA SoC (orange line) delivers 6500 Coremarks at 1.3 
watts. Image source: Microchip Technology

	■ Configure L1 and L2 as 
deterministic memory

	■ DDR4 memory subsystem
	■ Disable/enable branch predictors
	■ In-order pipeline operation

More processing with less 
energy

In addition to their system 
operation benefits, including 
support for hard, real-time 
processing, these FPGA SoCs are 
highly energy efficient. The EEMBC 
CoreMark-PRO benchmark is an 
industry standard for comparing 
the efficiency and performance of 
MCUs in embedded systems. It was 
designed specifically to benchmark 
hardware performance and to 
replace the Dhrystone benchmark.

The CoreMark-PRO workloads 
include a diversity of performance 
characteristics, instruction-level 
parallelism, and memory utilization 
based on four floating-point 
workloads and five common integer 
workloads. The floating-point 

the FPGA SoC include several 
debugging capabilities like passive 
run-time configurable advanced 
extensible interface (AXI) and 
instruction trace. AXI enables 
designers to monitor data that’s 
being written to or read from 
various memories and to know 
when it’s being written or read.

The RISC-V MCU subsystem uses 
a five-stage single-issue, in-order 
pipeline. It’s not vulnerable to 
Spectre or Meltdown exploits 
that can afflict out-of-order 
architectures. All five MCUs 
are coherent with the memory 
subsystem, supporting a mix of 
deterministic asymmetric multi-
processing (AMP) mode real-time 
systems and Linux. Capabilities 
of the RISC-V subsystem include 
(Figure 2):

	■ Run Linux and hard real-time 
operations

https://www.digikey.com/en/products/detail/microchip-technology/MPFS095TL-FCSG536E/15219668
https://www.digikey.com/en/products/detail/microchip-technology/MPFS095TL-FCSG536E/15219668
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FPGA SoC examples

Microchip Technology combines 
these capabilities and technologies 
into its PolarFire FPGA SoCs with 
multiple speed grades, temperature 
ratings, and various package sizes 
to support designers’ needs for 
a wide range of solutions with 
between 25 K and 460 K logic 
elements. Four temperature grades 
are available (all rated for TJ), 0°C 
to +100°C extended commercial 
range, -40°C to +100°C industrial 
range, -40°C to +125°C automotive 
range, and -55°C to +125°C military 
range.

Designers can choose from 
standard speed grade devices, or 
-1 speed grade devices that are 
15% faster. These FPGA SoCs can 
be operated at 1.0 volt for lowest 
power operation, or at 1.05 volts 
for higher performance. They are 
available in a range of package 
sizes, including 11 x 11 millimeters 
(mm), 16 x 16 mm, and 19 x 19 mm.

For applications that need extended 
commercial temperature operation, 
standard speed operation, and 254 
K logic elements in a 19 x 19mm 
package, designers can use the 
MPFS250T-FCVG484EES. For 
simpler solutions that need 23 

K logic elements, designers can 
turn to the MPFS025T-FCVG484E, 
also with extended commercial 
temperature operation and 
standard speed grade in a 19 x 
19 mm package. The MPFS250T-
1FCSG536T2 with 254 K logic 
elements is designed for high-
performance automotive systems 
and has an operating temperature 
range of -40 to 125°C and a -1 
speed grade for a 15% faster clock, 
in a compact 16 x 16mm package 
with 536 balls on a 0.5mm pitch 
(Figure 4).

FPGA SoC dev platform

To speed the design of systems 
with the PolarFire FPGA SoC, 
Microchip offers the MPFS-ICICLE-
KIT-ES PolarFire SoC Icicle kit 
that enables exploration of the 
five-core Linux-capable RISC-V 
microprocessor subsystem with 
low-power, real-time execution. 
The kit includes a free Libero Silver 
license that’s needed to evaluate 
designs. It supports programming 
and debugging features in a single 
language.

These FPGA SoCs are supported 
with the VectorBlox accelerator 
software development kit (SDK) 
that enables low-power, small-
form-factor AI/ML applications. 
The emphasis is on simplifying 
the design process to the point 
that designers don’t need to have 
prior FPGA design experience. 
The VectorBlox accelerator SDK 
enables developers to program 
power-efficient neural networks 
using C/C++. The Icicle kit has 
numerous features to provide 
a comprehensive development 

Figure 5. This comprehensive FPGA SoC development environment includes 
connectors for Raspberry Pi (top right) and mikroBUS (lower right side) expansion 
boards. Image source: Microchip Technology

environment, including a multi-rail 
power sensor system to monitor 
the various power domains, PCIe 
root port, and on-board memories – 
including LPDDR4, QSPI, and eMMC 
Flash – to run Linux and Raspberry 
Pi, and mikroBUS expansion 
ports for a host of wired and 
wireless connectivity options, plus 
functional extensions like GNSS 
location capability (Figure 5).

Expansion boards

A few examples of mikroBUS 
expansion boards include:

MIKROE-986, for adding CAN 
bus connectivity using a serial 
peripheral interface (SPI).

MIKROE-1582, for interfacing 
between the MCU and an RS-232 
bus.

MIKROE-989, for connecting with 
an RS422/485 communication bus.

MIKROE-3144, supports the LTE Cat 
M1 and NB1 technologies enabling 
reliable and simple connectivity 

with 3GPP IoT devices.

MIKROE-2670, enables GNSS 
functionality with concurrent 
reception of GPS and Galileo 
constellations plus either BeiDou or 
GLONASS, resulting in high position 
accuracy in situations with weak 
signals or interference in urban 
canyons.

Conclusion

Designers can turn to FPGA SoCs 
when developing connected, 
safety-critical and hard real-time 
deterministic systems. FPGA SoCs 
provide a wide range of system 
elements, including an FPGA 
fabric, RISC-V MCU subsystem 
with high-performance memories, 
high-speed communications 
interfaces, and numerous security 
functions. To help designers get 
started, development boards and 
environments are available that 
include all the necessary elements, 
including expansion boards that 
can be used to implement a wide 
range of communications and 
location functions.

Recommended reading

1.	 How to Implement Time 
Sensitive Networking 
to Ensure Deterministic 
Communication

2.	 Real-Time Operating 
Systems (RTOS) and Their 
Applications

How to use FPGA SoCs for secure and connected hard real-time systems

https://www.digikey.com/en/products/detail/microchip-technology/MPFS250T-FCVG484EES/15520492
https://www.digikey.com/en/products/detail/microchip-technology/MPFS025T-FCVG484E/16028828
https://www.digikey.com/en/products/detail/microchip-technology/MPFS250T-1FCSG536T2/16550056
https://www.digikey.com/en/products/detail/microchip-technology/MPFS250T-1FCSG536T2/16550056
https://www.digikey.com/en/products/detail/microchip-technology/MPFS-ICICLE-KIT-ES/12717112
https://www.digikey.com/en/products/detail/microchip-technology/MPFS-ICICLE-KIT-ES/12717112
https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-986/4495688
https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-1582/4976465
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https://www.digikey.com/en/articles/how-to-implement-time-sensitive-networking-to-ensure-deterministic-communication
https://www.digikey.com/en/articles/how-to-implement-time-sensitive-networking-to-ensure-deterministic-communication
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Retro Electro: Programming a 
calculator to form concepts: the 
birth of artificial intelligence	

Written by:  David Ray,
Cyber City Circuits

retroelectro

A proposal for The 
Dartmouth Summer 
Research Project on 
artificial intelligence

Since the earliest days of 
‘computers’, it has taken thousands 
of people to bring ‘artificial 
intelligence’ and machine learning 
to where it is today. 

In the Summer of 1955, Dr. John 
McCarthy started a new position 
as an assistant professor of 
Mathematics at Dartmouth College. 
Historians say McCarthy was 
the first to use the term ‘Artificial 
Intelligence’ in this proposal to the 
Rockefeller Foundation. Proposed 
and Organized by John McCarthy of 
Dartmouth College, Marvin Minsky 
of Harvard University, Nathaniel 
Rochester of IBM, and Claude E. 
Shannon of Bell Labs. The proposal 
was for a two-month, ten-man 

study on artificial intelligence. The 
aim was to gather many of the 
nation’s top scientists, engineers, 
and mathematicians in the same 
room together to focus on what 
artificial intelligence could mean 
and how they could get there. They 
requested $13,500 to complete 
this study, but the Rockefeller 
Foundation only provided $7500 
for a five-week study instead of two 
months.

The group of four organizers 
were all highly distinguished 
researches and inventors. They 
were developing the fundamentals 
for today’s generative AI, nearly 
seventy years ago.

The proposal outlines seven 
distinct parts of the problem.

Automatic computers

“If a machine can do a job, then 

an automatic calculator can be 
programmed to simulate the 
machine.”

The idea was simple: if a machine 
could do a job, a computer could be 

Figure 1. Some attendees 
of the Summer Research 
Project. Back row, from left 
to right, Oliver Selfridge, 
Nathaniel Rochester, 
Marvin Minsky, and John 
McCarthy. In front, Ray 
Solomonoff, Peter 
Milner, and Claude 
Shannon.

The study is to proceed on the basis of the 
conjecture that every aspect of learning 
or any other feature of intelligence can, in 
principle, be so precisely described that a 
machine can be made to simulate it.

Figure 2. Personal invitation to 
Dartmouth from McCarthy to Ray 
Solomonoff.
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programmed to replicate that task. 
Here, they admit that the speed and 
memory sizes of the machines they 
had at the time were ‘insufficient’ 
to simulate higher brain function. 
An issue they felt they could tackle 
is that there was no programming 
language available to do such a 
thing in the first place.

How can a computer be 
programmed to use a 
language

“It may be speculated that a large 
part of human thought consists 
of manipulating words according 
to rules of reasoning and rules of 
conjecture... This idea has never 
been very precisely formulated nor 
have examples been worked out.”  

Up to this point, the closest thing 
available for programming was 
assembly language. Here, the 
thought was that since much of 
thinking is really made up of words, 

grammar, and syntax, 
any thinking machine 
would likely need to 
operate in a similar 
way, governed by 
whitespace and syntax.

Neuron nets
“How can a set of 
(hypothetical) neurons 
be arranged so as to 
form concepts.”

As scientists began 
to grapple with the 
challenge of mimicking 

human thought, they turned to 
the brain’s fundamental building 
blocks: neurons. The question was 
how to arrange a set of hypothetical 
neurons to form concepts. Pioneers 
in the field had made strides in both 
theoretical and experimental work, 
but the problem remained far from 
solved.

Theory of the size of a 
calculation
“If we are given a well-defined 
problem, one way of solving it is to 
try all possible answers in order.”

In their quest to solve complex 
problems, early computer scientists 
realized that brute-force methods 
were too time consuming. To 
address this, they sought to 
understand and measure how 
efficient a calculation could be.

Self-improvement
“Probably a truly intelligent 
machine will carry out activities 

which may best be described as 
self-improvement.”

The vision of creating a truly 
intelligent machine led to a 
fascinating concept: self-
improvement. Researchers 
speculated that for a machine to be 
intelligent, it would need the ability 
to enhance its own capabilities over 
time. 

Abstraction
“A number of types of ‘abstraction’ 
can be distinctly defined and 
several others less distinctly. A 
direct attempt to classify these 
and to describe machine methods 
of forming abstractions from 
sensory and other data would seem 
worthwhile.”

Abstraction, the ability to distill 
complex information into simpler 
concepts, was identified as a 
key process in human thought. 
To replicate this in machines, 
scientists needed to classify 
and define different types of 
abstraction. This task was seen as 
essential for enabling machines 
to interpret sensory data and 
other information in a human-like 
manner.

Randomness and creativity
“A fairly attractive and yet clearly 
incomplete conjecture is that 
the difference between creative 
thinking and unimaginative 
competent thinking lies in the 
injection of some randomness.”

As researchers delved into the 

nature of creativity, they considered 
the role of randomness in the 
creative process. The intriguing 
idea emerged that the difference 
between routine and creative 
thinking might lie in the controlled 
injection of randomness. This 
theory suggested that when guided 
by intuition, randomness could be 
the secret ingredient that makes 
creative thinking possible.

Proposal for research by  
C. E. Shannon	

Claude Shannon’s master’s thesis, 
A Symbolic Analysis of Relay and 
Switching Circuits, is credited 
with introducing Boolean logic to 
electronic circuits and creating the 
digital age. After completing his 
doctorate at MIT, Shannon worked 
at Bell Labs, where he colaborated 
with and mentored McCarthy and 
Minsky in 1951 and 1952. Together, 
they developed ‘Theseus’, a self-
solving ‘mouse in a maze’ using 
relay logic.

Shannon’s research proposal for 
the Summer Research Project 
delved into two key areas related 
to information theory and brain 
models:

Application of information 
theory to computing 
machines and brain models
Shannon’s first research focus 
addresses the challenge of reliably 
transmitting information across 
noisy channels using unreliable 
components. He explores how 
information flows in parallel 
data streams over closed-loop 
networks and examines the 
complications that may arise, 
such as propagation delays and 
redundancy. Shannon proposes 
investigating new approaches to 
minimize these delays, ensuring 
reliable transmission of information 
across complex systems.

The matched environment 
and brain model approach to 
Automata
In the second topic, Shannon 
theorizes that both animal and 
human brain development occurs 
in stages, beginning with simpler 
environments and eventually 
moving toward more complex 
ones. As someone gets older, the 
more their brain can comprehend 
the universe around them. He 
wanted to explore the specific 
stages of brain development and 
express them mathematically. 
By understanding how brains 

adapt to increasingly complex 
environments, Shannon hopes 
to build models replicating 
this adaptability in ‘automata’, 
ultimately advancing our 
understanding of mechanized 
intelligence.

Proposal for research by  
M. L. Minsky

As a graduate student, Marvin 
Minsky developed the first ‘neural 
network’ (The ‘Stochastic Neural 
Analog Reinforcement Calculator’ 
or ‘SNARC’) at Bell Labs in the 
early 1950s. A Navy Veteran, he 
had degrees from Harvard and 
Princeton. He founded MIT’s 
Artificial Intelligence Lab and 
generally stayed there from its 
inception in 1963 until he died in 
2016.

Minsky’s proposal focused on 
designing a machine capable of 
learning through sensory and 
‘motor abstractions’. Minsky 

“We will concentrate on a problem of devising 
a way of programming a calculator to form 
concepts and to form generalizations. This, of 
course, is subject to change when the group 
gets together.”

retroelectro

Figure 2. Claude Shannon with his self-solving 
‘mouse-in-a-maze’ machine, Theseus.

Figure 3. Marvin Minsky at Piano’
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programmed with a fixed set 
of rules to address specific 
contingencies and failures, leaving 
them without the flexibility to act 
intuitively or with common sense. 
For example, in your calculator, 
if you divide by ‘0’, then you will 
likely get an error or some sort, but 
this is because the calculator was 
programmed to give an error when 
asked to divide by ‘0’ instead of it 
learning on its own that dividing by 
‘0’ doesn’t work and developing its 
own rules.

Rochester highlights the frustration 
from when machines fail due to 
rigid or contradictory rules and 
suggests that a more sophisticated 
approach is needed to enable 
machines to behave intelligently. 
Rochester draws on Kenneth 
Craik’s model of human thought, 
which theorizes that the brain 
constructs ‘engines’ that simulate 

and predict outcomes in the 
environment. 

He proposes that machines 
could similarly be designed to 
form abstractions of sensory 
data, define problems, and then 
simulate possible solutions, 
evaluating their success before 
acting. While this approach works 
for well-understood problems, 
Rochester notes that solving new 
or long-unsolved problems requires 
randomness and creativity. He 
argues that randomness could be 
key to overcoming the limitations 
of pre-programmed rules and 
enabling machines to behave 
in original ways, much like how 
scientists may rely on a ‘hunch’ to 
approach difficult problems.

Rochester discusses the Monte 
Carlo method, which involves 
conducting hundreds or thousands 
of random experiments to 
approximate solutions to complex 
problems. He sees potential in 
applying this method to machine 
learning, suggesting that machines 
could explore many possibilities 
simultaneously and uncover 
solutions that traditional methods 
might miss. 

However, he acknowledges that 

simulating human-
like randomness 
in machines is 
challenging, as 
the brain’s control 
mechanisms differ 
significantly from 
those of calculators 
and computers. 

Proposal for 
research by John 
McCarthy

John McCarthy, an 
army veteran, is famously known 
for coining the term ‘Artificial 
Intelligence.’ Following his 
doctorate at Princeton, he took a 
few assistant professor positions 
in the area, landing at Dartmouth 
College in the summer of 1955. As 
a graduate student, he interned 
with Marvin Minsky at Bell Labs, 
where he was mentored by Claude 
Shannon. Following the Summer 
Research Project, however, he 
took a position at MIT with Marvin 
Minsky, continuing work in AI and 
developing the LISP programming 
language.

McCarthy’s proposal focuses on 
studying the relationship between 
language and intelligence. It 

argues that direct applications 
of trial-and-error methods to the 
interaction between sensory data 
and motor activity are unlikely 
to result in complex behaviors. 
Instead, he advocates for applying 
trial and error at a higher level of 
abstraction. 

He highlights language as a 
crucial tool people use to handle 
intricate phenomena, noting that 
human minds use language to 
formulate conjectures and test 
them. McCarthy points out that 
English has several advantageous 
properties for facilitating complex 
thought processes, properties that 
programming languages developed 
for computers often lack. 

These properties include the 
ability to use concise arguments 
that can be supplemented by 
informal mathematics, a way of 
incorporating other languages 
within English, and the ability 
for users to reference their own 
problem-solving progress. He also 

describes a machine that can 
be trained via a ‘trial and error’ 
process to perform specific 
tasks within an environment and 
exhibit ‘goal-seeking’ behavior. 
This hypothetical machine could 
process inputs, generate outputs, 
and adapt to success or failure by 
reading sensors and such, similar 
to Shannon’s Theseus project, for 
which Minsky designed the SNARC. 
Minsky emphasizes the importance 
of pairing sensory and motor 
controls for the machine to affect 
and learn from its environment 
effectively. 

Progress in the machine’s learning 
would depend on its ability to 
relate environmental changes 
to corresponding changes in its 
sensor readings. Minsky further 
explains that the machine should 
develop an internal abstract 
model of its environment, 
stored in memory. This internal 
‘abstract’ model would allow 
it to first experiment internally 
before conducting external 
tests, enabling it to perform 
tasks more intelligently. The 
machine’s behavior would appear 
imaginative because it could 

predict and anticipate changes in 
the environment based on its motor 
actions. 

Proposal for research by  
N. Rochester

Nathaniel Rochester worked at 
IBM at the time. He graduated 
from MIT in 1941 and then worked 
developing RADAR systems for the 
US Navy during the war. He started 
at IBM in 1948 after the wartime 
development dried up. A few years 
later, IBM released the first in the 
700 series of electronic computers, 
the IBM 701, for which Rochester 
was the lead developer. At the time 
of the proposal, Rochester was the 
head of a research group studying 
information theory and automatic 
pattern recognition. McCarthy 
and Rochester first met when IBM 
gifted an IBM 704 to MIT’s research 
lab, specifically for researching 
‘neural networks.’ 

Rochester’s research proposal 
centers on the challenge of creating 
a machine capable of exhibiting 
originality in its problem-solving 
abilities. Typically, machines 
like automatic calculators are 

“So the mathematician has the machine making 
a few thousand random experiments … the 
results of these experiments provide a rough 
guess as to what the answer may be.” 

– Rochester

“Unless the machine is provided with, or is 
able to develop, a way of abstracting sensory 
material, it can progress through a complicated 
environment only through painfully slow steps, 
and in general will not reach a high level of 
behavior.” 

- Minsky

retroelectro

Figure 4. Nathaniel Rochester designed 
the first electronic IBM computer.

Figure 5. John McCarthy while working 
with chess computers.
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suggests that a fully formalized 
version of English would include 
rules not just for proofs but also for 
guesses and conjectures.

McCarthy contrasts this idea 
against the logical languages 
of the day, which were mainly 
used for creating pre-determined 
instruction lists or formalizing parts 
of mathematics. He proposes that 
an artificial language be developed 
to handle conjecture and self-
reference effectively. This language 
would mirror English in that short 
statements in English would have 
equally concise counterparts in the 
artificial language. 

McCarthy’s eventual goal is to 
create a language that would allow 
a machine to engage in tasks such 
as learning to play games, with the 
potential to handle more advanced 
problem-solving tasks.

The impact of the Summer 
Research Project

The Dartmouth Summer Research 
Project on Artificial Intelligence 
took place the following summer 
and is a milestone moment in 
the history of AI. Throughout the 
conference eleven people attended. 

While there were many ‘projects’ 
and ‘conferences’ concerning 
machine intelligence, this event 
marks the largest concerted effort 
to achieve Artificial Intelligence at 
the time.

While the goal was missed and the 
problem turned out harder than 
they thought, its results continue 
to inform machine learning and 

artificial intelligence development 
seventy years later.

The writer is thankful to Grace 
Solomonoff for her help archiving 
so much of the Dartmouth event, 
that otherwise would have been 
lost to time.

1938
Claude Shannon publishes his thesis ‘A 
Symbolic Analysis of Relay and Switching 
Circuits,’ introducing Boolean logic to 
electronic circuits.

1944
John McCarthy is drafted into the U.S. Army. 
Marvin Minsky joins the U.S. Navy to learn 
radio and electronics.

1948
Rochester begins work at IBM.

1951
McCarthy and Minsky intern at Bell Labs, 
mentored by Claude Shannon. Minsky 
develops the first neural network, SNARC.

1955
McCarthy joins Dartmouth College as an 
assistant professor. McCarthy submits a 
proposal to the Rockefeller Foundation, 
coining the term “Artificial Intelligence.”

1958
McCarthy develops the LISP programming 
language, which becomes the standard for 
AI development.

1965
Moore’s Law is proposed, predicting long-
term exponential growth in computing 
power.

1997
IBM’s Deep Blue defeats world chess 
champion Garry Kasparov, a landmark 
achievement in AI history.

2022
OpenAI releases ChatGPT to the public.

1941
Nathaniel Rochester graduates from MIT.

1946
ENIAC, the first electronic “general 
purpose” computer, begins operation, 
marking a significant advancement in 
digital computing.

1950
Alan Turing publishes Computing 
Machinery and Intelligence, proposing the 
Turing Test.

1952
IBM releases the IBM 701, designed 
by Rochester and Haddad. Shannon 
demonstrates ‘Theseus’ at Bell Labs.

1956
The Dartmouth Summer Research Project 
on Artificial Intelligence takes place.

1963

1966

2015

MIT’s AI Lab is founded by McCarthy and 
Minsky, funded by ARPA, becoming a hub 
for AI research.

ELIZA, the first chatbot, is developed by 
Joseph Weizenbaum, pioneering early 
natural language processing.

OpenAI is founded.
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“(The) main reason the 1956 Dartmouth 
workshop did not live up to my expectations is 
that AI is harder than we thought.”

- Marvin Minsky

http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf
http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf
https://raysolomonoff.com/dartmouth/
https://spectrum.ieee.org/dartmouth-ai-workshop
https://spectrum.ieee.org/history-of-ai
https://spectrum.ieee.org/history-of-ai
https://ethw.org/Oral-History:Nathaniel_Rochester
https://ethw.org/Oral-History:Nathaniel_Rochester
http://jmc.stanford.edu/articles/mcc59/mcc59.pdf
https://dspace.mit.edu/handle/1721.1/11173
https://mast.queensu.ca/~math474/gallager-on-shannon-it2001.pdf

https://mast.queensu.ca/~math474/gallager-on-shannon-it2001.pdf

https://youtu.be/z2Whj_nL-x8?si=OFa1rXJi-D8_JGBM
https://youtu.be/z2Whj_nL-x8?si=OFa1rXJi-D8_JGBM
https://www.bell-labs.com/claude-shannon/assets/images/automata/pages-from-shannon-bell-labs-reporter-1952-vol-1-1-carousel-01.pdf
https://zahid-parvez.medium.com/history-of-ai-the-first-neural-network-computer-marvin-minsky-231c8bd58409
https://youtu.be/_9_AEVQ_p74?si=89lP490k8ZyRWswo
https://youtu.be/_9_AEVQ_p74?si=89lP490k8ZyRWswo
https://youtu.be/CB2SsvcECzI?si=xl3Mvgr4iWYLKY_Q
https://youtu.be/CB2SsvcECzI?si=xl3Mvgr4iWYLKY_Q
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Industry 4.0 relies on intelligent 
automation for manufacturing 
electronics. Increasingly capable 
automation is everywhere, from 
the edge to the cloud, in sensors, 
robots and cobots, programmable 
logic controllers (PLCs), and 
other equipment. Semiconductor 
wafers, integrated circuits, passive 
components, packaging, and 
electronic systems for consumer, 
green energy, automotive, medical, 
industrial, military/aerospace, 
and other applications depend 
on intelligent automation for their 
production. Unified manufacturing 
execution systems (MES) provide 
real-time monitoring, control, 
tracking, and documentation of the 
entire manufacturing chain, from 
raw materials to finished goods.

The cyber-physical automated 
systems in Industry 4.0 extend 
beyond traditional manufacturing 
activities and rely on various forms 
of machine learning (ML) ranging 
from deep reinforcement learning 
in the Cloud to tinyML on the Edge 
for flexible production, continuous 
improvement, and consistently 
high quality. The number of layers 
of connectivity is growing, and the 
combination of Edge computing, 
the Industrial Internet of Things 
(IIoT), and Cloud computing is 
increasing the challenges related 
to cyber security. Blockchain has 
recently entered the picture for 
comprehensive and secure supply 
chain management.

This article looks at key 
automation trends in electronics 
manufacturing, including the 
increasing layers of connectivity, 
the growing need for cybersecurity, 
the specialized implementations 
of ML being deployed, and how 
traceability and MES support 
real-time production metrics and 
analytics. Along the way, some of 
the technologies needed to fully 
realize the promise of Industry 
4.0 for mass customization with 
high quality and low costs are 
reviewed, including how DigiKey 
supports the needs of automation 
system designers with a wide 
range of solutions. It closes with 
a look at how blockchain is used 
to deploy highly secure enterprise-
wide supply chain management 
systems.

Increasing layers of 
connectivity

The IIoT in Industry 4.0 includes 
more wired and wireless network 
layers for sensor networks, 
autonomous mobile robots 
(AMRs), and other systems. For 
example, IO-Link was developed to 
provide a simplified wired network 
connection for the massive number 
of sensors, actuators, indicators, 
and other previously unconnected 
legacy edge devices to higher-level 
networks like Ethernet IP, Modbus 
TCP/IP, and PROFINET. With IO-
Link, the inputs and outputs (IOs) 
of these devices are captured and 

How automation, machine 
learning, and Blockchain 
are driving the future of 
electronics manufacturing
Written by: Jeff Shepard

https://www.digikey.com/en/resources/industrial-automation/product-selector
https://www.digikey.com/en/resources/industrial-automation/product-selector
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converted to the IO-Link protocol 
for serial connectivity defined in IEC 
61131-9 with a single 4- or 5-wire 
unshielded cable defined in IEC 
60974-5-2 (Figure 1). In addition to 
providing a new networking layer to 
capture more granular information 
about factory processes, IO-Link 
supports rapid deployment and 
remote configuration, monitoring, 
and diagnostics of connected 
devices to support line and 
process changes needed for mass 
customization in Industry 4.0 
factories.

Wireless IIoT devices, from sensors 
to robots, also contribute to the 
growing networking layers. Various 
wireless protocols, including 
Wi-Fi, 5G, LTE, and others, are 
used in modern factories. For 
example, AMRs use a combination 
of onboard sensors and Wi-Fi 
connectivity to understand their 
environment, identify possible 

obstacles and move safely and 
efficiently from place to place. 
Colaborative robots (cobots) are 
designed to work with people to 
improve operational efficiency and 
often require wireless connectivity. 
In some cases, AMRs move cobots 
from task to task as needed (Figure 
2).

Increasing cyber dangers

The increasing layers in industrial 
networks, combined with the 
explosion in the number of 
connected devices, are resulting 
in a growing number of security 
threat vectors and increasing cyber 
dangers. Several industrial and 
IoT-specific security standards 
and methodologies have been 
developed, including International 
Electrotechnical Commission (IEC) 
62443 and the Security Evaluation 
Standard for IoT Platform (SESIP).

IEC 62443 is a series of standards 
developed by the International 
Society of Automation (ISA) 99 
committee and approved by the 

IEC. IEC 62443 is an 800-plus-page 
series of standards for Industrial 
Automation and Control Systems 
(IACS) in 14 subsections and four 
tiers (Figure 3). Key sections that 
define the product development 
and security requirements for 
components are:

	■ IEC 62443-4-1: Product 
Security Development Lifecycle 
Requirements – defines a secure 
product development lifecycle 
including initial requirements 
definition, secure design and 
implementation, verification 
and validation, defect and patch 
management, and end-of-life.

	■ IEC 62443-4-2: Security for 
Industrial Automation and 
Control Systems: Technical 
Security Requirements for 
IACS Components – specifies 
security capabilities that enable 
a component to mitigate threats 
for a given security level.

SESIP is published by the 

GlobalPlatform and defines a 
common structure for evaluating 
the security of connected 
products and addresses IoT-
specific compliance, security, 
privacy, and scalability challenges. 
SESIP provides clear definitions 
of security functionality on 
components and platforms in 
the form of Security Functional 
Requirements (SFRs). It also 
provides strength metrics that 
measure robustness against 
attacks in the form of SESIP 
‘levels’ from 1 to 5, with 1 being 
self-certification and 5 
corresponding to extensive 
testing and third-party 
certification.

ML from the Cloud to 
the Edge

ML is a key enabler of 
intelligent automation, 
supporting continuous 

process improvements and high-
quality products. The use of neural 
networks is a well-established 
ML technique in Industry 4.0. It’s 
beginning to be supplemented with 
deep reinforcement learning in the 
Cloud. Deep reinforcement learning 
adds a framework of goal-oriented 
algorithms to a neural network 
core. Initially, reinforcement 
learning was confined to repeatable 
environments like playing games; 
today, algorithms can operate in 
more ambiguous environments 
in the real world. In the future, 
advanced reinforcement learning 
implementations may achieve 
artificial general intelligence.

ML is not just in the Cloud; it’s 
reaching onto the factory floor to 
the Edge. The expansion slots in 
industrial PCs and programmable 
controllers on the factory floor 
increasingly host ML and AI 
accelerator cards for intelligent 
process control.

Tiny machine learning (tinyML) 
is optimized for deployment in 
low-power applications. The use 
of tinyML in sensor applications 

 Figure 3. IEC 62443 is a comprehensive set of IACS security standards.  
Image source: IEC

Figure 2. An AMR (bottom) can navigate 
from place to place using a combination 
of onboard sensors and wireless 
connectivity and pick up and move a 
cubit (top) to a new workstation.  
Image source: Omron

Figure 4. Arduino’s Tiny Machine Learning Kit is 
designed for developing IIoT sensor applications. 
Image source: Digi-Key

 Figure 1. IO-Link can be used 
to connect sensors and other 
devices using diverse interfaces 
to Ethernet, PROFINET, or Modbus 
networks. Image source: Banner 
Engineering

https://www.digikey.com/en/resources/industrial-automation/sensors-and-switches
https://www.digikey.com/en/products/filter/robotics-robots/993
https://gca.isa.org/blog/structuring-the-isa-iec-62443-standards
https://globalplatform.org/sesip/
https://www.digikey.com/en/products/filter/industrial-pcs/1062
https://www.digikey.com/en/products/filter/controllers-programmable-plc-pac/814
https://www.digikey.com/en/products/filter/controllers-programmable-plc-pac/814
https://www.digikey.com/en/supplier-centers/omron-automation
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is growing rapidly. One example 
of a tinyML application is IIoT 
sensor analytics in Edge devices 
powered by batteries or energy 
harvesting. Arduino offers a Tiny 
Machine Learning Kit that includes 
an Arduino Nano 33 BLE Sense 
board containing an MCU and a 
variety of sensors that can monitor 
movement, acceleration, rotation, 
sounds, gestures, proximity, color, 
light intensity, and movement 
(Figure 4). An OV7675 camera 
module and an Arduino shield 
are also included. The onboard 
MCU can implement deep neural 
networks based on the TensorFlow 
Lite open-source deep learning 
framework for on-device inference.

Real-time metrics and 
analytics

Real-time metrics and analytics 
are essential aspects of intelligent 
automation. Traceability 4.0 
combines product visibility, supply 
chain visibility, and line-item 
visibility from previous generations 
of traceability and provides a 
complete history of all aspects of a 
product. In addition, it includes all 
machine and process parameters 
and supports overall equipment 
effectiveness (OEE) metrics that 
optimize manufacturing processes 
(Figure 5).

Traceability is vital in many 

industries, from medical device 
manufacturing to automotive and 
aerospace. In the case of medical 
devices, regulatory requirements 
demand extensive tracking and 
traceability. Automobiles and 
aerospace systems can have tens 
of thousands of parts to track. It’s 
not just part history; traceability 
includes tracking individual part 
geometric dimensioning and 
tolerancing (GD&T). GD&T enables 
precision manufacturing and the 
installation of parts based on their 
exact GD&T values, supporting 
high-precision assemblies for 
industries like aerospace and 
automotive manufacturing.

Traceability can improve the 
accuracy and efficiency of 
implementing product recalls. 
It enables the manufacturer to 
identify all the affected products 
and the supplier or suppliers of any 
defective components.

Corrective and preventative actions 
can be accelerated through the use 
of traceability. Like product recalls, 
knowing the complete provenance 
of products enables manufacturers 
to efficiently target and schedule 
service and maintenance activities 
for products in the field.

Traceability and MES

Unified MES implementations 

incorporating traceability can 
produce a searchable database 
of all the information related to 
individual products, including 
as-planned designs and as-built 
results. For example, traceability 
is used to track individual 
components and materials as 
they arrive, including inbound 
quality testing data, location of the 
supplying factory, and so on, before 
production starts. MES verifies that 
information based on the planned 
design and feeds into kitting 
operations and work in process 
databases.

Traceability data supplied by 
the IIoT combined with MES 
supports the mass customization 
of products in Industry 4.0. MES 
enables the right materials, 
processes, and other resources 
to be at the right place to ensure 
the lowest production cost and 
highest quality result. Also, MES 
and traceability can combine and 
demonstrate compliance with 
government regulations and make 
the data readily accessible to 
auditors or others as required.

Blockchain

A Blockchain is a decentralized, 
or distributed, digital ledger 
system for recording transactions 
between multiple parties in a 
tamperproof and verifiable manner. 
Any transactions where trust 
is important, like supply chain 
management, are potential uses 
for blockchain. In a supply chain 
with many participants, Blockchain 
can improve transaction efficiency 
and make transactions verifiable 
and tamperproof. Two examples of 
the benefits of using Blockchain in 
supply chain activities include:

Replacement of manual 
processes. 
Manual paper-based processes 
that rely on signatures or other 
forms of physical verification can 
potentially be improved using 
Blockchain. The limitation is that 
the universe of participants in the 
ledger must be finite and easily 
identifiable. A delivery company 
with a constantly changing 
database of unfamiliar customers 
may not be a good candidate 
for Blockchain. A manufacturing 
operation with a finite and slowly 

Figure 5. Traceability 4.0 is a 
comprehensive implementation that 
supports the diverse requirements of 
Industry 4.0 operations. Image source: 
Omron

changing group of trusted suppliers 
is a good candidate.

Strengthening traceability. 
Blockchain can provide a good 
tool for improving supply chain 
transparency and meeting 
growing regulatory and consumer 
information requirements. For 
example, the Blockchain can 
support the Drug Supply Chain and 
Security Act and the unique device 
identifier mandate from the U.S. 
Food and Drug Administration. 
In the automotive and other 
industries, suppliers throughout 
the supply chain can be involved 
in implementation of recalls, and 
Blockchain can provide a good tool 
for implementing the Traceability 
Guideline published by the 
Automotive Industry Action Group.

Summary

The intelligent automation that’s 
the foundation of Industry 4.0 
relies on numerous technologies 
for its implementation, including 
a growing number of network 
layers with wired and wireless 
connectivity that result in 
increasingly complex cyber security 
threats. In addition, machine 
learning is being implemented 
from the edge to the Cloud to 
support real-time metrics and 
analytics, including traceability and 
unified MES. Finally, Blockchain 
technology is being introduced to 
support tamperproof and verifiable 
databases.

The intelligent automation that’s the foundation 
of Industry 4.0 relies on numerous technologies 
for its implementation, including a growing 
number of network layers with wired and 
wireless connectivity that result in increasingly 
complex cyber security threats. 

How automation, machine learning, and Blockchain are driving the future of electronics manufacturing
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Quickly implement 
spoofing-resistant face 
recognition without a 
Cloud connection
Written by: Stephen Evanczuk

Face recognition has gained 
widespread acceptance for 
authenticating access to 
smartphones but attempts to apply 
this technology more broadly have 
fallen short in other areas despite 
its effectiveness and ease of use. 
Along with the technical challenges 
of implementing reliable, low-
cost machine learning solutions, 
developers must address user 
concerns around the reliability 
and privacy of conventional face 
recognition methods that depend 
on cloud connections that are 
vulnerable to spoofing.

This article discusses the difficulty 
of secure authentication before 
introducing a hardware and 
software solution from NXP 
Semiconductors that addresses 
the issues. It then shows how 
developers without prior experience 
in machine learning methods 
can use the solution to rapidly 
implement offline anti-spoofing 
face recognition in a smart product.

The challenges of secure 
authentication for smart 
products

In addressing growing concerns 
about the security of smart 
products, developers have found 
themselves left with few tenable 
options for reliably authenticating 
users looking for quick yet secure 
access. Traditional methods rely on 
multifactor authentication methods 
that rest on some combination 
of the classical three factors 

of authentication: “Something 
you know”, such as a password; 
“Something you have”, such as 
a physical key or key card; and 
“Something you are”, which is 
typically a biometric factor such 
as a fingerprint or iris. Using this 
approach, a strongly authenticated 
door lock might require the user to 
enter a passcode, use a key card, 
and further provide a fingerprint 
to unlock the door. In practice, 
such stringent requirements 
are bothersome or simply 
impractical for consumers who 
need to frequently and easily re-
authenticate themselves with a 
smartphone or other routinely used 
device.

The use of face recognition 
has significantly simplified 
authentication for smartphone 
users, but smartphones possess 
some advantages that might 
not be available in every device. 
Besides the significant processing 
power available in leading-
edge smartphones, always-on 
connectivity is a fundamental 
requirement for delivering the 
sophisticated range of services 
routinely expected by their users.

For many products that require 
secure authentication, the 
underlying operating platform 
will typically provide more 
modest computing resources and 
more limited connectivity. Face 
recognition services from the 
leading cloud-service providers 
shift the processing load to the 
cloud, but the need for robust 

connectivity to ensure minimal 
response latency might impose 
requirements that remain beyond 
the capabilities of the platform. Of 
equal or more concern to users, 
transmitting their image across 
public networks for processing and 
potentially storing it in the cloud 
raises significant privacy issues.

Using NXP Semiconductors’ i.MX 
RT106F processors and associated 
software, developers can now 
implement offline face recognition 
that directly addresses these 
concerns.

Hardware and software for 
spoof-proof offline face 
recognition

A member of the NXP i.MX RT1060 
Crossover microcontroller (MCU) 
family, the NXP i.MX RT106F 
series is specifically designed to 
support easy integration of offline 
face recognition into smart home 
devices, consumer appliances, 
security devices, and industrial 
equipment. Based on an Arm 
Cortex-M7 processor core, the 
processors run at 528 megahertz 
(MHz) for the industrial grade 
MIMXRT106FCVL5B, or 600MHz 
for commercial grade processors 
such as the MIMXRT106FDVL6A 
and MIMXRT106FDVL6B.

Besides supporting a wide range 
of external memory interfaces, 
i.MX RT106F processors include 
1 megabyte (Mbyte) of on-chip 
random access memory (RAM) 
with 512 kilobytes (Kbyte) 

https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgTCBcDaIEoBUCMAGAbAMRAXQL5A
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgTCBcDaIEoBUCMAGAbAMRAXQL5A
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcpgnAHLKoDGUBmBDANgZwKYA0IA9lANogAMIAusQA4AuUIAykwE4CWAdgOYgAvsQC0AJmQg0kLgFcipCiCT0QzVsJEhJkSgCUAKmCoA2GrSFA
https://www.digikey.com/en/supplier-centers/arm
https://www.digikey.com/en/products/detail/nxp-usa-inc/MIMXRT106FCVL5B/13557459
https://www.digikey.com/en/products/detail/nxp-usa-inc/MIMXRT106FDVL6A/10815624
https://www.digikey.com/en/products/detail/nxp-usa-inc/MIMXRT106FDVL6B/13557469
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Figure 2. The NXP Oasis Lite runtime library includes an Oasis 
Lite core that uses MiniCV and an NXP inference engine built 
on neural network libraries from NXP and Arm. 
Image source: NXP

Figure 3. The NXP SLN-VIZNAS-IOT kit includes a connected module that provides 
a robust connected system platform needed to run authentication software. Image 
source: NXP

 Figure 4. In the NXP SLN-VIZNAS-IOT kit, the connected module (left) is attached to 
the vision application board to provide the hardware foundation for face recognition. 
Image source: NXP

Figure 1. NXP Semiconductor’s i.MX RT106F processors combine a full set of 
functional blocks needed to support face recognition for consumer, industrial and 
security products. Image source: NXP

configured as general purpose 
RAM, and 512 Kbytes that can 
be configured either as general 
purpose RAM or as tightly coupled 
memory (TCM) for instructions 
(I-TCM) or data (D-TCM). Along with 
on-chip power management, these 
processors offer an extensive set 
of integrated features for graphics, 
security, system control, and 
both analog and digital interfaces 
typically needed to support 
consumer devices, industrial 
human machine interfaces (HMIs), 
and motor control (Figure 1).

Although similar to other i.MX 
RT1060 family members, i.MX 
RT106F processors bundle in a 
runtime license for NXP’s Oasis 

Lite face recognition software. 
Designed to speed inference on this 
class of processors, the Oasis Lite 
runtime environment performs face 
detection, recognition, and even 
limited emotion classification using 
neural network 
(NN) inference 
models running 
on an inference 
engine and MiniCV 
– a stripped-
down version of 
the open source 
OpenCV computer 
vision library. The 
inference engine 
builds on an NXP 
NN library and 
the Arm Cortex 

Microcontroller System Interface 
Standard NN (CMSIS-NN) library 
(Figure 2).

The inference models reside on 
the i.MX RT106F platform, so face 
detection and recognition execute 
locally, unlike other solutions 
that depend on Cloud-based 
resources to run the machine 
learning algorithms. Thanks 
to this offline face recognition 
capability, designers of smart 
products can ensure private, 
secure authentication despite 
low bandwidth or spotty Internet 
connectivity. Furthermore, 
authentication occurs quickly 
with this hardware and software 
combination, requiring less than 
800 milliseconds (ms) for the 
processor to wake from low-
power standby and complete face 
recognition.

Used with the i.MX RT106F 
processor, the Oasis Lite runtime 
simplifies implementation of 
offline face recognition for smart 
products, but the processor 

and runtime environment are of 
course only part of a required 
system solution. Along with a 
more complete set of system 
components, an effective 
authentication solution requires 
imaging capability that can 
mitigate a type of security threat 
called presentation attacks. These 
attacks attempt to spoof face 
recognition authentication by 
using photographs. For developers 
looking to rapidly deploy face-
based authentication in their own 
products, the NXP SLN-VIZNAS-IOT 
development kit and associated 
software provide a ready-to-use 
platform for evaluation, prototyping 
and development of offline, anti-
spoofing face recognition.

Complete secure systems 
solution for face recognition

As with most advanced processors, 
the i.MX RT106F processor requires 
only a few additional components 
to provide an effective computing 
platform. The NXP SLN-VIZNAS-
IOT kit completes the design by 
integrating the i.MX RT106F with 

additional devices to provide 
a complete hardware platform 
(Figure 3).

The kit’s connected module 
board combines an NXP 
MIMXRT106FDVL6A i.MX RT106F 
processor, an NXP A71CH secure 
element, and two connectivity 
options – NXP’s MKW41Z512VHT4 
Kinetis KW41Z Bluetooth low 
energy (BLE) system-on-chip 
(SoC) and Murata Electronics’ 
LBEE5KL1DX-883 Wi-Fi/Bluetooth 
module.

To supplement the processor’s 
on-chip memory, the connected 
module adds Winbond Electronics’ 
W9825G6JB 256 megabit (Mbit) 
synchronous dynamic RAM 
(SDRAM), an Integrated Silicon 
Solution. Inc. (ISSI) IS26KL256S-
DABLI00 256 Mbit NOR flash, and 
ISSI’s IS25LP256D 256 Mbit Quad 
Serial Peripheral Interface (SPI) 
device.

Finally, the module adds a Torex 
Semiconductor XCL214B333DR 

https://www.digikey.com/en/products/detail/nxp-usa-inc/SLN-VIZNAS-IOT/13547507
https://www.digikey.com/en/products/filter/embedded-microcontrollers-application-specific/769?s=N4IgTCBcDaIIIHYCMAGJBhAEgFQNIQF0BfIA
https://www.digikey.com/en/products/detail/nxp-usa-inc/MKW41Z512VHT4/6073454
https://www.digikey.com/en/supplier-centers/murata-electronics
https://www.digikey.com/en/products/detail/murata-electronics/LBEE5KL1DX-883/6043959
https://www.digikey.com/en/supplier-centers/winbond-electronics
https://www.digikey.com/en/products/detail/winbond-electronics/W9825G6JB-6/4037471
https://www.digikey.com/en/supplier-centers/integrated-silicon-solution
https://www.digikey.com/en/supplier-centers/integrated-silicon-solution
https://www.digikey.com/en/products/detail/issi-integrated-silicon-solution-inc/IS26KL256S-DABLI00/11568735
https://www.digikey.com/en/products/detail/issi-integrated-silicon-solution-inc/IS26KL256S-DABLI00/11568735
https://www.digikey.com/en/products/filter/memory/774?s=N4IgjCBcoEwAwBYDMVQGMoDMCGAbAzgKYA0IA9lANogJwBsYYMIAuqQA4AuUIAypwCcAlgDsA5iAC%2BpALTNoIDJEEBXEuSogAnKw7dIIKdJDzqASV4wArABkACtbqtJQA
https://www.digikey.com/en/supplier-centers/torex-semiconductor
https://www.digikey.com/en/supplier-centers/torex-semiconductor
https://www.digikey.com/en/products/detail/torex-semiconductor-ltd/XCL214B333DR/4860449
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buck converter to supplement the 
i.MX RT106F processor’s internal 
power management capabilities 
for the additional devices on the 
connected module board.

The connected module in turn 
mounts on a vision application 
board that combines a Murata 
Electronics IRA-S210ST01 passive 
infrared (PIR) sensor, motion 
sensor, battery charger, audio 
support, light emitting diodes 
(LEDs), buttons, and interface 
connectors (Figure 4).

 Figure 4. In the NXP SLN-VIZNAS-
IOT kit, the connected module (left) 
is attached to the vision application 
board to provide the hardware 
foundation for face recognition. 
(Image source: NXP)

Along with this system platform, 
a face recognition system design 
clearly requires a suitable camera 
sensor to capture an image of 
the user’s face. As mentioned 
earlier, however, concerns about 
presentation attacks require 
additional imaging capabilities.

Mitigating presentation 
attacks

Researchers have for years 
explored different presentation 
attack detection (PAD) methods 
designed to mitigate attempts 
such as using latent fingerprints 
or images of a face to spoof 
biometric-based authentication 
systems. Although the details 
are well beyond the scope of 
this article, PAD methods in 
general use deep analysis of the 
quality and characteristics of the 
biometric data captured as part of 
the process, as well as ‘liveness’ 
detection methods designed to 
determine if the biometric data 
was captured from a live person. 
Underlying many of these different 
methods, deep neural network 
(DNN) models play an important 
role not only in face recognition, 
but also in identifying attempts to 
spoof the system. Nevertheless, the 
imaging system used to capture the 
user’s face can provide additional 
liveness detection support.

For the SLN-VIZNAS-IOT kit, 
NXP includes camera modules 
that contain a pair of ON 

Semiconductor’s MT9M114 image 
sensors. Here, one camera is 
equipped with a red, green, blue 
(RGB) filter, and the other camera 
is fitted with an infrared (IR) 
filter. Attached through camera 
interfaces to the vision application 
board, the RGB camera generates 
a normal visible light image, 
while the IR camera captures an 
image that would be different 
for a live person compared to an 
image of the person. Using this 
liveness detection approach along 
with its internal face recognition 
capability, the SLN-VIZNAS-IOT 
kit provides offline, anti-spoofing 
face recognition capability in a 
package measuring about 30 x 40 
millimeters (mm) (Figure 5).

Getting started with the 
SLN-VIZNAS-IOT kit

The NXP SLN-VIZNAS-IOT kit 
comes ready-to-use with built-
in face recognition models. 
Developers plug in a USB cable and 
touch a button on the kit to perform 
a simple manual face registration 
using the preloaded ‘elock’ 
application and the accompanying 
mobile app (Figure 6, left). After 
registration, the mobile app will 
display a ‘welcome home’ message 
and ‘unlocked’ label when the kit 
authenticates the registered face 
(Figure 6, right).

The kit’s Oasis Lite face recognition 
software processes models from 
its database of up to 3000 RGB 
faces with a recognition accuracy 

of 99.6%, and up to 100 IR faces 
with an anti-spoofing accuracy of 
96.5%. As noted earlier, the NXP 
hardware/software solution needs 
less than one second (s) to perform 
face detection, image alignment, 
quality check, liveness detection, 
and recognition over a range from 
0.2 to 1.0 meters (m). In fact, the 
system supports an alternate 
‘light’ inference model capable of 
performing this same sequence 
in less than 0.5 s but supports a 
smaller maximum database size of 
1000 RGB faces and 50 IR faces.

Building custom face 
recognition applications

Used as is, the NXP SLN-VIZNAS-
IOT kit lets developers quickly 
evaluate, prototype and develop 
face recognition applications. 
When creating custom hardware 
solutions, the kit serves as a 
complete reference design with 
full schematics and a detailed bill 
of materials (BOM). For software 
development, programmers 
can use the NXP MCUXpresso 
integrated development 
environment (IDE) with FreeRTOS 

support and configuration tools. For 
this application, developers simply 
use NXP’s online MCUXpresso SDK 
Builder to configure their software 
development environment with 
NXP’s VIZNAS SDK, which includes 
the NXP Oasis Lite machine 
learning vision engine (Figure 7).

The software package includes 
complete source code for the 
operating environment as well 
as the elock sample application 
mentioned earlier. NXP does 
not provide source code for its 
proprietary Oasis Lite engine or for 
the models. Instead, developers 

work with the Oasis Lite runtime 
library using the provided 
application programming interface 
(API), which includes a set of 
intuitive function calls to perform 
supported operations. In addition, 
developers use a provided set of C 
defines and structures to specify 
various parameters including image 
size, memory allocation, callbacks 
and enabled functions used by the 
system when starting up the Oasis 
Lite runtime environment (Listing 
1).

The elock sample application 
code demonstrates the key design 
patterns for launching Oasis as 
a task running under FreeRTOS, 
initializing the environment and 
entering its normal run stage. In the 
run stage, the runtime environment 
operates on each frame of an 
image, executing the provided 
callback functions associated 
with each event defined in the 
environment (Listing 2).

Figure 6. The NXP SLN-VIZNAS-IOT hardware kit works out of the box, utilizing a 
companion app to register a face (left) and recognize registered faces (right).  
Image source: NXP

 Figure 7. NXP provides a comprehensive software environment that executes the 
NXP Oasis Lite runtime library and utility middleware on the FreeRTOS operating 
system. Image source: NXP

Quickly implement spoofing-resistant face recognition without a Cloud connection

 Figure 5. The NXP SLN-VIZNAS-
IOT hardware kit integrates a 
dual camera system for liveness 
detection (top) and a vision 
application board (bottom) with 
a connected module to provide 
a drop-in solution for offline face 
recognition with anti-spoofing 
capability. Image source: NXP

https://www.digikey.com/en/products/detail/murata-electronics/IRA-S210ST01/5012561
https://www.digikey.com/en/supplier-centers/onsemi
https://www.digikey.com/en/supplier-centers/onsemi
https://www.digikey.com/en/products/detail/on-semiconductor/MT9M114EBLSTCZ-CR1/7221156
https://mcuxpresso.nxp.com/
https://mcuxpresso.nxp.com/
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The sample application can 
provide developers with step by 
step debug messages describing 
the results associated with each 
event processed by the event 
handler (EvtHandler). For example, 
after the quality check completes 
(OASISLT_EVT_QUALITY_CHK_
COMPLETE), the system prints out 
debug messages describing the 
result, and after face recognition 
completes (OASISLT_EVT_REC_
COMPLETE), the system pulls the 

Listing 1. Developers can modify software execution 
parameters by modifying the contents of structures such as 
the one shown here for Oasis Lite runtime initialization.  
Code source: NXP

Listing 2. The Oasis Lite runtime recognizes a series of events 
documented as an enumerated set in the Oasis Lite runtime 
header file. Code source: NXP

typedef struct {

    //max input image height, width and channel, min_
face: minimum face can be detected

    int height;

    int width;

  

    //only valid for RGB images; for IR image, always 
GREY888 format

    OASISLTImageFormat_t img_format;

    OASISLTImageType_t img_type;

  

    //min_face should not smaller than 40

    int min_face;

  

    /*memory pool pointer, this memory pool should only 
be used by OASIS LIB*/

    char* mem_pool;

  

    /*memory pool size*/

    int size;

  

    /*output parameter,indicate authenticated or not*/

    int auth;

typedef enum {

    /*indicate the start of face detection, user can 
update frame data if it is needed.

     * all parameter in callback parameter is invalid.*/

    OASISLT_EVT_DET_START,

  

    /*The end of face detection.

     *if a face is found, pfaceBox(OASISLTCbPara_t) 
indicated the rect(left,top,right,bottom point value)

     *info and landmark value of the face.

     *if no face is found,pfaceBox is NULL, following 
event will not be triggered for current frame.

     *other parameter in callback parameter is invalid */

    OASISLT_EVT_DET_COMPLETE,

  

    /*Face quality check is done before face 
recognition*/

    OASISLT_EVT_QUALITY_CHK_START,

    OASISLT_EVT_QUALITY_CHK_COMPLETE,

  

    /*Start of face recognition*/

    OASISLT_EVT_REC_START,

  

    /*The end of face recognition.

     * when face feature in current frame is gotten, 
GetRegisteredFaces callback will be called to get all

     * faces feature registered and OASIS lib will try to 
search this face in registered faces, if this face

     * is matched, a valid face ID will be set in 
callback parameter faceID and corresponding 
simularity(indicate

     * how confidence for the match) also will be set.

     * if no face match, a invalid(INVALID_FACE_ID) will 
be set.*/

    OASISLT_EVT_REC_COMPLETE,

    /*callback functions provided by caller*/

    InfCallbacks_t cbs;

  

    /*what functions should be enabled in OASIS LIB*/

    uint8_t enable_flags;

  

    /*only valid when OASIS_ENABLE_EMO is activated*/

    OASISLTEmoMode_t emo_mode;

  

    /*false accept rate*/

    OASISLTFar_t false_accept_rate;

  

    /*model class */

    OASISLTModelClass_t mod_class;

  

} OASISLTInitPara_t;

user id and name from its database 
for recognized faces and prints out 
that information (Listing 3).

Besides supporting face 
recognition processing 
requirements, the NXP SLN-
VIZNAS-IOT software is 
designed to protect the operating 
environment. To ensure runtime 
security, the system is designed to 
verify the integrity and authenticity 
of each signed image loaded into 
the system using a certificate 

stored in the SLN-VIZNAS-IOT 
kit’s filesystem. As this verification 
sequence starts with a trusted 
bootloader stored in read-only 
memory (ROM), this process 
provides a chain of trust for running 
application firmware. Also, because 
code signing and verification can 
slow development, this verification 
process is designed to be bypassed 
during software design and 
debug. In fact, the SLN-VIZNAS-
IOT kit comes preloaded with 
signed images, but code signature 
verification is bypassed by default. 
Developers can easily set options 
to enable full code signature 

  

    /*start of emotion recognition*/

    OASISLT_EVT_EMO_REC_START,

  

    /*End of emotion recognition, emoID indicate which 
emotion current face is.*/

    OASISLT_EVT_EMO_REC_COMPLETE,

  

    /*if user set a registration flag in a call of OASISLT_
run and a face is detected, this two events will be 
notified

     * for auto registration mode, only new face(not 
recognized) is added(call AddNewFace callback 
function)

     * for manu registration mode, face will be added 
forcely.

     * for both cases, face ID of new added face will be 
set in callback function */

    OASISLT_EVT_REG_START,

    /*when registration start, for each valid frame is 
handled,this event will be triggered and indicate

     * registration process is going forward a little.

     * */

    OASISLT_EVT_REG_IN_PROGRESS,

    OASISLT_EVT_REG_COMPLETE,

    OASISLT_EVT_NUM

  

} OASISLTEvt_t;

Quickly implement spoofing-resistant face recognition without a Cloud connection
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verification for production.

Along with the runtime environment and associated 
sample application code, NXP provides Android mobile 
apps with full java source code. One app, the VIZNAS 
FaceRec Manager, provides a simple interface for 
registering faces and managing users. Another app, 
the VIZNAS Companion app, allows users to provision 
the kit with Wi-Fi credentials using an existing Wi-Fi or 
BLE connection.

Conclusion

Face recognition offers an effective approach 
for authenticating access to smart products, but 
implementing it has typically required local high-
performance computing or always-on high-bandwidth 
connectivity for rapid responses. It has also been a 
target of spoofing and is subject to concerns about 
user privacy.

As shown, a specialized processor and software 
library from NXP Semiconductors offer an alternative 
approach that can accurately perform offline face 
recognition in less than a second without a Cloud 
connection, while mitigating spoofing attempts.

static void EvtHandler(ImageFrame_t *frames[], 
OASISLTEvt_t evt, OASISLTCbPara_t *para, void *user_
data)

{

[code redacted for simplification]

        case OASISLT_EVT_QUALITY_CHK_COMPLETE:

        {

            UsbShell_Printf(“[OASIS]:quality chk res:%d\
r\n”, para->qualityResult);

  

            pQMsg->msg.info.irLive  = para->reserved[5];

            pQMsg->msg.info.front   = para->reserved[1];

            pQMsg->msg.info.blur    = para->reserved[3];

            pQMsg->msg.info.rgbLive = para->reserved[8];

  

            if (para->qualityResult == OASIS_QUALITY_
RESULT_FACE_OK_WITHOUT_GLASSES ||

                para->qualityResult == OASIS_QUALITY_
RESULT_FACE_OK_WITH_GLASSES)

            {

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[EVT]:ok!\r\n”);

            }

            else if (OASIS_QUALITY_RESULT_FACE_SIDE_
FACE == para->qualityResult)

            {

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[EVT]:side face!\r\n”);

            }

            else if (para->qualityResult == OASIS_QUALITY_
RESULT_FACE_TOO_SMALL)

            {

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[EVT]:Small Face!\r\n”);

            }

            else if (para->qualityResult == OASIS_QUALITY_
RESULT_FACE_BLUR)

            {

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[EVT]: Blurry Face!\r\n”);

            }

            else if (para->qualityResult == OASIS_QUALITY_
RESULT_FAIL_LIVENESS_IR)

            {

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[EVT]: IR Fake Face!\r\n”);

            }

            else if (para->qualityResult == OASIS_QUALITY_
RESULT_FAIL_LIVENESS_RGB)

            {

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[EVT]: RGB Fake Face!\r\n”);

            }

        }

        break;

[code redacted for simplification]

        case OASISLT_EVT_REC_COMPLETE:

        {

            int diff;

            unsigned id                     = para->faceID;

            OASISLTRecognizeRes_t recResult = para-
>recResult;

  

            timeState->rec_comp = Time_Now();

            pQMsg->msg.info.rt  = timeState->rec_start - 
timeState->rec_comp;

            face_info.rt        = pQMsg->msg.info.rt;

#ifdef SHOW_FPS

            /*pit timer unit is us*/

            timeState->rec_fps++;

            diff = abs(timeState->rec_fps_start - timeState-
>rec_comp);

            if (diff > 1000000 / PIT_TIMER_UNIT)

            {

                // update fps

                pQMsg->msg.info.recognize_fps = timeState-
>rec_fps * 1000.0f / diff;

                timeState->rec_fps            = 0;

                timeState->rec_fps_start      = timeState-
>rec_comp;

            }

#endif

            memset(pQMsg->msg.info.name, 0x0, 
sizeof(pQMsg->msg.info.name));

  

            if (recResult == OASIS_REC_RESULT_KNOWN_
FACE)

            {

                std::string name;

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[OASIS]:face id:%d\r\n”, id);

                DB_GetName(id, name);

                memcpy(pQMsg->msg.info.name, name.c_
str(), name.size());

                face_info.recognize = true;

                face_info.name      = std::string(name);

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[OASIS]:face id:%d name:%s\r\n”, id, pQMsg->msg.
info.name);

            }

            else

            {

                // face is not recognized, do nothing

                UsbShell_DbgPrintf(VERBOSE_MODE_L2, 
“[OASIS]:face unrecognized\r\n”);

                face_info.recognize = false;

            }

  

            VIZN_RecognizeEvent(gApiHandle, face_info);

        }

        break;

Listing 3. As shown in this snippet from a sample application 
in the NXP software distribution, an event handler processes 
events encountered during the face recognition sequence.
Code source: NXP

Quickly implement spoofing-resistant face recognition without a Cloud connection
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Written by: Adam Taylor

Why and how to use Efinix 
FPGAs for AI/ML imaging – 
Part 1: getting started

Editor’s Note: New approaches 
to FPGA architectures bring 
finer-grained control and greater 
flexibility to address the needs 
of machine learning (ML) and 
artificial intelligence (AI). Part 1 
of this two-part series introduces 
one such architecture from Efinix 
and how to get started with it 
using a development board. 
Part 2 discusses interfacing the 
development board to external 
devices and peripherals, such as a 
camera.

FPGAs play a critical role in many 
applications, from industrial control 
and safety to robotics, aerospace, 
and automotive. Thanks to the 
flexible nature of the programmable 
logic core and their wide interfacing 
capabilities, one growing use 
case for FPGAs is in image 
processing when ML inference is 
to be deployed. FPGAs are ideal 
for implementing solutions that 
have several high-speed camera 
interfaces. In addition, FPGAs 
also enable the implementation 
of dedicated processing pipelines 
in the logic, thereby removing 

bottlenecks that would be 
associated with CPU or GPU-based 
solutions.

For many developers, however, 
their applications require more ML/
AI functionality and finer-grained 
control or routing and logic, beyond 
what classic FPGA architectures 
with combinatorial logic blocks 
(CLBs) can provide. Newer 
approaches to FPGA architectures 
address these issues. For example, 
Efinix’s Quantum architecture uses 
an eXchangeable Logic and Routing 
(XLR) block.

This article discusses key features 
and attributes of the Efinix FPGA 
architecture, emphasizing its AI/
ML capabilities and introducing 
real-world implementations. It 
then discusses a development 
board and associated tools that 
developers can use to quickly get 
started on their next AI/ML imaging 
design.

Efinix FPGA devices

Efinix currently offers two device 
ranges. It initially introduced 
the Trion family, which offers 
logic densities from 4000 (4K) 
to 120K logic elements (LEs), 
and is fabricated using an SMIC 
40LL process. The newest line 
of devices, the Titanium family, 
offers logic densities from 35K to 
1 million (1M) logic elements, and 
is fabricated on the very popular 

TSMC 16 nanometer (nm) node.

Both offerings are based around 
the Quantum architecture, which 
is unique in the FPGA world. 
The standard FPGA architecture 
is based on CLBs which, at the 
simplest level, contain a look-up 
table (LUT) and flip-flops. The CLBs 
implement logic equations that are 
then interconnected via routing. 
Efinix’s Quantum architecture 
moves away from distinct logic and 
routing blocks with the XLR block.

What makes an XLR block unique 
is that it can be configured to 
function as a logic cell with an LUT, 
a register and adder, or a routing 
matrix. This approach offers a 
finer-grained architecture that 
provides routing flexibility, enabling 
implementations that are logic 
heavy or routing heavy to achieve 
the desired performance.

Figure 2. The Titanium 
FPGA Ti180 comes in 
a variety of options 
depending on the bus 
width, I/O, and memory 
requirements. Image 
source: Efinix

Figure 1. What makes an XLR block unique is that it can be 
configured to function as either a logic cell with an LUT, a 
register and adder, or a routing matrix. Image source: Efinix

https://www.digikey.com/en/supplier-centers/efinix
https://www.digikey.com/en/articles/why-and-how-to-use-efinix-fpgas-for-ai-ml-imaging-part-2-image-capture-and-processing
https://www.digikey.com/en/products/filter/fpgas-field-programmable-gate-array/696?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL74wCsiIKkAZgIYA2AznoSSAQ1aggQBV0ASwIA7KtSA
https://www.digikey.com/en/products/filter/fpgas-field-programmable-gate-array/696?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL7X4KSkCiAZgJYB2bAHgAQAqbVAEMumALZVqQA
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As the newest family, the Titanium 
devices offer the most advanced 
features for the developer (Figure 
2). Along with the XLR core, they 
provide multi-gigabit serial links 
which operate at either 16 gigabits 
per second (Gbps) or 25.8 Gbps, 
depending on the device selected. 
These multi-gigabit links are crucial 
for enabling high-speed data 
transfer on and off the chip.

Titanium devices also provide a 
wide range of input/output (I/O) 
interfacing capabilities that can be 
grouped as general purpose I/O 
(GPIO), and that can support single-
ended I/O standards such as low-
voltage CMOS (LVCMOS) at 3.3, 2.5, 
and 1.8 volts.

For high-speed and differential 
interfacing, the Titanium devices 
provide high-speed I/O (HSIO) 
which supports single-ended 
I/O standards such as LVCMOS 
at 1.2, 1.5 volts, and SSTL and 
HSTL. Differential I/O standards 
supported by HSIO include low-
voltage differential signalling 
(LVDS), differential SSTL, and 
HSTL.

Modern FPGAs also require 
closely coupled, high-bandwidth 
memory, which is used to store 
image frames for image processing 
applications, sample data for signal 
processing, and of course, to run 
operating systems and software 
for processors implemented within 
the FPGA. The Titanium range 
of devices provides the ability to 
interface with dynamic data rate 
four (DDR4) and low-power DDR4(x) 
(LPDDR4(x)). Depending on the 
exact Titanium device selected, the 
bus width support is x32 (J) or x16 
(M), while some devices have no 
LPDDR4 support (L).

Titanium FPGAs are SRAM based 
and require a configuration 
memory, with the device 
configuration performed by either 
master/slave Serial Peripheral 
Interconnect (SPI) or JTAG. To 
ensure this configuration method 
is secure, the Titanium FPGA 
uses AES GCM encryption of the 
bitstream, along with AES GCM 
and RSA-4096 to provide bitstream 
authentication. Strong security 
like this is required since FPGAs 

Figure 4. The Ti180 M484 development 
kit is shown with its versatile range of 
expansion options based on QSE and 
FMC connectors. Image source: Adam 
Taylor

Figure 5. Within Efinity, new projects are created targeting 
the selected device. Image source: Adam Taylor

are deployed at the edge where 
malicious actors could access and 
manipulate their behavior.

Development board 
introduction

Development boards form a critical 
element of the FPGA evaluation 
process since they can be used to 
explore the capabilities of a device 
and prototype applications, thereby 
helping to reduce overall risk. The 
first development board available to 
evaluate Titanium FPGAs and begin 
prototyping applications is the 
Ti180 M484 (Figure 3). The board 
features an FPGA Mezzanine Card 
(FMC) connector and four Samtec 
QSE connectors.

The Ti180 FPGA fitted to this 
development board provides 
172K XLR cells, 32 global clocks, 
640 digital signal processing 
(DSP) elements, and 13 megabits 
(Mbits) of embedded RAM. The 
DSP elements provide the ability 
to implement fixed point 18 x 
19 multiplications and 48-bit 
multiplications. This DSP can also 
be optimized for single instruction, 
multiple data (SIMD) operations 
running in either a dual or quad 
configuration. DSP elements can 
also be configured to perform 
floating point operations.

Like most development boards, the 
Ti180 development board provides 
simple LEDs and buttons. Its 
real power, however, comes in its 
interfacing capabilities. The Ti180 
development board provides a 
low-pin-count FMC connector that 
enables a wide range of peripherals 
to be connected. As it’s a widely 
used standard, there are many 
FMC cards that enable interfacing 
of high-speed analog-to-digital 
converter (ADC), digital-to-analog 
converter (DAC), networking, and 
memory/storage solutions.

In addition to the FMC connection, 
the board provides four Samtec 
QSE connectors which enable the 
developer to add expansion cards. 
These QSE connectors are used to 
provide MIPI inputs and outputs, 
with each QSE connector providing 
either a MIPI input or output.

The Ti180 board also provides 256 
Mbits of LPDDR4 to support the 
high-performance memory required 
in image or signal processing 

applications. In addition, the 
development board provides a 
range of clocking options at 25, 
33.33, 50, and 74.25 megahertz 
(MHz), which can be used with 
the device phase lock loop (PLL) 
to generate different internal 
frequencies.

The ability to reprogram and 
debug live on the board during 
development is critical and requires 
a JTAG connection, which is 
provided on-board via a USB-C 
interface. Also provided is non-
volatile memory in the form of two, 
256-Mbit NOR flash devices that 
can be used to demonstrate the 
configuration solution.

The board is powered from a 12-
volt universal power adaptor that is 
included in the box. Also included 
is an FMC-to-QSE break out, along 
with QSE-based expansion cards 
for HDMI, Ethernet, MIPI, and LVDS. 

Figure 3. Along with a Titanium FPGA, the 
Ti180 M484 development kit features an FMC 
connector and four Samtec QSE connectors.  
Image source: Adam Taylor

https://www.digikey.com/en/products/detail/efinix-inc/TI180M484-DK/16731861
https://www.digikey.com/en/supplier-centers/samtec
https://www.digikey.com/en/products/filter/rectangular-connectors/arrays-edge-type-mezzanine-board-to-board/308?s=N4IgTCBcDaIIoGUCiIC6BfIA
https://www.digikey.com/en/products/detail/analog-devices-inc/ad9467-fmc-250ebz/3232934
https://www.digikey.com/en/products/detail/analog-devices-inc/ad9467-fmc-250ebz/3232934
https://www.digikey.com/en/products/detail/texas-instruments/DAC3484EVM/2627663
https://www.digikey.com/en/products/detail/texas-instruments/DAC3484EVM/2627663
https://www.digikey.com/en/products/detail/efinix-inc/efx-fmc-ddr3-gpio/17084465
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To demonstrate the Ti180 image 
processing capabilities, a dual RPI 
daughter card and two IMX477 
camera cards are also provided.

The software environment

Implementing designs targeting the 
Ti180 development board use the 
Efinix software Efinity. The software 
enables the generation of a bit 
stream via synthesis and place and 
route. It also provides developers 
with intellectual property (IP) 
blocks, timing analysis, and on-chip 
debugging.

Note that a development board 
is required to gain access to the 

Efinity software. Unlike other 
vendors, though, the tool does not 
have different versions that require 
additional licensing.

Within Efinity, new projects are 
created targeting the selected 
device. RTL files can then be added 
to the project, and constraints 
created for timing and I/O design. 
It’s within Efinity that developers 
are also able to implement the I/O 
design, utilizing the HSIO, GPIO, and 
specialized I/O.

A critical element of FPGA 
design is leveraging IP, especially 
for complex IP such as AXI 
interconnects, memory controllers, 
and softcore processors. Efinity 

provides developers with a range 
of IP blocks that can be used to 
accelerate the design process.

While FPGAs are excellent at 
implementing parallel processing 
structures, many FPGA designs 
include softcore processors. These 
provide the ability to implement 
sequential processing, such as 
network communications. To 
enable the deployment of the 
softcore processors in the Efinix 
devices, Efinity provides the 
Sapphire system-on-chip (SoC) 
configuration tool. Sapphire allows 
the developer to define a multi-
processor system that has both 
caches and cache coherency 
across multiple processors, along 
with the ability to run an embedded 
Linux operating system. Within 
Sapphire, the developer can choose 
between one and four softcore 
processors.

The softcore processor being 
implemented is the VexRiscV 
soft CPU, which is based on the 
RISC-V instruction set architecture. 
The VexRiscV processor is a 
32-bit implementation which has 
extensions for pipelining and 
offers a configurable feature set, 
making it ideal for implementation 
in Efinix devices. Optional 
configurations include a multiplier, 
atomic instructions, floating point 
extensions, and compressed 
instructions. Depending on the 
configuration of the SoC system, 
performance will range between 
0.86 and 1.05 DMIPS/MHz.

Figure 6. Efinity 
provides developers 
with an IP catalog 
that they can use to 
accelerate the design 
process. Image source: 
Adam Taylor

Once the hardware environment 
has been designed and 
implemented in the Efinix device, 
the application software can 
be developed using the Ashling 
RiscFree IDE. Ashling RiscFree is 
an Eclipse-based IDE that enables 
the creation and compilation of 
application software, along with 
debug on the target to fine-tune the 
application prior to deployment.

If an embedded Linux solution is 
being developed, all necessary boot 
artifacts are provided, including 
First Stage Boot Loader, OpenSBI, 
U-Boot, and Linux using Buildroot. 
Alternatively, the developer can use 
FreeRTOS if a real-time solution is 
required.

AI implementation

Building upon the RISC-V 
softcore operation is Efinix’s AI 

implementation. This leverages 
the custom instruction capability 
of the RISC-V processor to enable 
the acceleration of TensorFlow Lite 
solutions. The use of the RISC-V 
processor also enables users to 
create custom instructions that 
can be used as part of the pre-
processing or post-processing 
following the AI inference, 
creating a more responsive and 
deterministic solution.

To get started on an AI 
implementation, the first step is 
to explore the Efinix model zoo, 
which is a library of AI/ML models 
optimized for its end technology. 
For developers working with the 
Efinix devices, the model zoo can 
be accessed, and the network 
trained using Jupyter Notebooks 
or Google Colab. Once the 
network has been trained, it can 
be converted from a floating point 
model to a quantized one using the 

TensorFlow Lite convertor.

Once in the TensorFlow Lite format, 
Efinix’s tinyML accelerator can 
be used to create a deployable 
solution on the RISC-V solution. 
The tinyML generator enables 
the developer to customize the 
accelerator implementation and 
generate the project files. When 
deployed in this manner, the 
acceleration can range between 
4x and 200x depending upon 
the selected architecture and 
customization.

Conclusion

Efinix devices provide developers 
with flexibility thanks to their unique 
XLR architecture. The toolchain 
provides the ability to not only 
implement RTL design, but also 
implement complex SoC solutions 
that deploy softcore RISC-V 
processors. Building on top of the 
softcore SoC is an AI/ML solution 
that enables the deployment of ML 
inference.

Why and how to use Efinix FPGAs for AI/ML imaging – Part 1: getting started

Figure 7. Ashling RiscFree is an Eclipse-
based IDE that enables the creation and 
compilation of application software, 
along with debug on the target.  
Image source: Adam Taylor
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Written by:  
Bill Schweber, 
Contributing Author at DigiKey

Editor’s Note: New approaches 
to FPGA architectures bring 
finer-grained control and greater 
flexibility to address the needs 
of machine learning (ML) and 
artificial intelligence (AI). Part 1 
of this two-part series introduces 
one such architecture from Efinix 
and how to get started with it 
using a development board. Here, 
Part 2 discusses interfacing the 
development board to external 
devices and peripherals such as a 
camera, and how to leverage the 
FPGA to remove image processing 
bottlenecks.

FPGAs play a critical role in many 
applications, from industrial control 
and safety to robotics, aerospace, 
and automotive. Thanks to the 
flexible nature of the programmable 
logic core and their wide interfacing 
capabilities, one growing use case 
for FPGAs is in image processing, 
where machine learning (ML) can 
be deployed. FPGAs are ideal 
for implementing solutions that 
have several high-speed camera 
interfaces thanks to their parallel 
logic structure. In addition, 
FPGAs also enable the use of a 
dedicated processing pipeline in 
the logic, thereby removing shared-

Why and how to use Efinix 
FPGAs for AI/ML imaging – 
Part 2: Image capture and 
processing
Written by: Adam Taylor

resource bottlenecks that would be 
associated with CPU or GPU-based 
solutions.

This second look at Efinix’s 
Titanium FPGAs will examine 
the reference image processing 
application that comes with the 
FPGA’s Ti180 M484 development 
board. The aim is to understand the 
constituent parts of the design, and 
to identify where FPGA technology 
enables the removal of bottlenecks 
or enables other benefits to 
developers.

 Figure 1. Conceptually, the Ti180 M484 
reference design receives images from 
several MIPI cameras, performs frame 
buffering in the LPDDR4x, and then 
outputs the images to an HDMI display. 
Image source: Efinix

https://www.digikey.com/en/articles/efinix-fpgas-for-ai-ml-imaging-part-1-getting-started
https://www.digikey.com/en/supplier-centers/efinix
https://www.digikey.com/en/products/filter/fpgas-field-programmable-gate-array/696?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL7X4KSmoCWqAhgHbOYC2V1QA
https://www.digikey.com/en/products/detail/efinix-inc/TI180M484-DK/16731861
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MIPI D-PHY within the FPGA I/O 
reduces the complexity of the 
circuit card design while also 
reducing the bill of materials 
(BOM).

With the image stream from the 
camera received, the reference 
design then converts the output of 
the MIPI CSI-2 RX into an Advanced 
eXtensible Interface (AXI) Stream. 
An AXI Stream is a unidirectional 
high-speed interface that provides 
a stream of data from a master 
to a slave. Handshaking signals 
to transfer between a master 
and slave are provided (tvalid 
and tready) along with sideband 
signals. These sideband signals 
can be used to convey image timing 
information such as start of frame 
and end of line.

AXI Stream is ideal for image 
processing applications and 
enables Efinix to provide a range 
of image processing IP which can 
then be easily integrated into the 
processing chain as required by the 
application.

After being received, the MIPI CSI-2 
image data and timing signals are 

converted into an AXI Stream and 
input into a direct memory access 
(DMA) module, which writes the 
image frame to the LPDDR4x and 
acts as the frame buffer.

This DMA module is operating 
under the control of the RISC-V 
core in the FPGA within a Sapphire 
system on chip (SoC). This SoC 
provides control, such as stopping 
and starting DMA writes, in addition 
to providing the DMA write channel 
with the necessary information 
to correctly write the image data 
to the LPDDR4x. This includes 
information on the memory 
location and the width and height of 
the image defined in bytes.

The output channel in the reference 
design reads the image information 
from the LPDDR4x frame buffer 
under the control of the RISC-V 
SoC. The data is output from the 
DMA IP as an AXI Stream, which is 
then converted from RAW format 
provided by the sensor to RGB 
format (Figure 2), and prepared 
for output over the on-board 
Analog Devices’ ADV7511 HDMI 
transmitter.

The use of the DMA also enables 
the Sapphire SoC RISC-V to access 
the images stored within the frame 
buffer, and the abstract statistics 
and image information. The 
Sapphire SoC is also able to write 
overlays into the LPDDR4x so that 
they can be merged with the output 
video stream.

Modern CMOS image sensors 
(CISs) have several modes of 
operation and can be configured 
to provide on-chip processing, 
and several different output 
formats and clocking schemes. 
This configuration is normally 
provided over an I²C interface. 
In the Efinix reference design, 
this I²C communication to the 
MIPI cameras is provided by the 
Sapphire SoC RISC-V processor.

Integration of the RISC-V processor 
within the Titanium FPGA reduces 
the overall size of the final 
solution as it removes the need to 
implement both complex FPGA 
state machines that increase 
design risk, as well as external 
processors that add to the BOM.

Inclusion of the processor also 
enables support with additional IP 
to communicate with the MicroSD 
card. This enables real-world 
applications where images may 
be required to be stored for later 
analysis.

Overall, the architecture of the 
Ti180 reference design is optimized 
to enable a compact, low-cost, yet 
high-performance solution that 
allows developers to reduce BOM 

The Ti180 M484 reference design clearly 
showcases the capabilities of Efinix FPGAs 
and the Ti180 in particular. The design 
leverages several of the unique I/O structures 
to implement a complex image processing 
path that supports several incoming MIPI 
streams. 

Why and how to use Efinix FPGAs for AI/ML imaging – Part 2: Image capture and processing

The Ti180 M484-based 
reference design

Conceptually, the reference design 
(Figure 1) receives images from 
several Mobile Industry Processor 
Interface (MIPI) cameras, performs 
frame buffering in the LPDDR4x, 
and then outputs the images 
to a High Definition Multimedia 
Interface (HDMI) display. An FPGA 
Mezzanine Card (FMC) and four 
Samtec QSE interfaces on the 
board are used to provide the 
camera inputs and HDMI output.

The FMC to QSE expansion card 
is used in conjunction with the 
HDMI daughter card to provide the 
output video path, while three QSE 
connectors are used to interface 
with the DFRobot SEN0494 MIPI 
cameras. If multiple MIPI cameras 
are not available, a single camera 
can be used by looping back the 
single camera channel to simulate 
additional cameras.

At a high level, this application 
may appear to be straightforward. 
However, receiving multiple high-
definition (HD) MIPI streams at 
a high frame rate is challenging. 
This is where FPGA technology 
is beneficial because it allows 
designers to utilize multiple MIPI 
streams in parallel.

The architecture of the reference 
design leverages both parallel and 
sequential processing structures 
with the FPGA. The parallel 
structures are used to implement 
the image processing pipeline, 
while a RISC-V processor provides 
the sequential processing used for 
the FPGA look-up tables (LUTs).

The image processing pipeline 
can be split into two elements 
within many FPGA-based image 
processing systems, namely the 
input and output streams. The 
input stream is connected to the 
camera/sensor interface, and 
processing functions are applied 

to the sensor’s output. These 
functions can include Bayer 
conversion, auto white balance, and 
other enhancements. In the output 
stream, the image is prepared for 
display. This includes changing 
color spaces (e.g., RGB to YUV) and 
post-processing for the desired 
output format, such as HDMI.

Often the input image processing 
chain operates at the sensor pixel 
clock rate. This has different 
timing to the output chain, which 
is processed at the output display 
frequency.

A frame buffer is used to connect 
the input to the output processing 
pipeline, which is often stored 
in external high-performance 
memory, such as LPDDR4x. This 
frame buffer decouples between 
the input and output pipelines, 
allowing access to the frame buffer 
via direct memory access at the 
appropriate clock frequency.

The Ti180 reference design uses a 
similar approach to the concepts 
outlined above. The input image 
processing pipeline implements 
a MIPI Camera Serial Interface 
2 (CSI-2) receiver intellectual 
property (IP) core, which is built 
upon the MIPI physical layer 
(MIPI D-PHY)-capable input/
output (I/O) of the Titanium FPGA. 
MIPI is a challenging interface 
because it uses both single-ended 
and differential signaling on the 
same differential pair, in addition 
to low-speed and high-speed 
communications. Integrating the 

 Figure 2. Sample images output from the 
reference design. Image source: Adam Taylor

https://www.digikey.com/en/supplier-centers/analog-devices
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https://www.digikey.com/en/supplier-centers/dfrobot
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cost through system integration.

One of the key benefits of reference 
designs is that they can be used to 
kickstart application development 
on custom hardware, enabling 
developers to take critical elements 
of the design and build off it with 
their needed customizations. This 
includes the ability to use Efinix’s 
TinyML flow to implement vision-
based TinyML applications running 
on the FPGA. This can leverage 
both the parallel nature of FPGA 
logic and the ability to easily add 
custom instructions into RISC-V 
processors, allowing the creation of 
accelerators within the FPGA logic.

Implementation

As discussed in Part 1, the Efinix 
architecture is unique in that it 
uses eXchangeable Logic and 
Routing (XLR) cells to provide both 
routing and logic functionality. A 
video system such as the reference 
design is a mixed one that is both 
logic and routing heavy: extensive 
logic is required to implement the 

image processing features, and 
extensive routing is needed to 
connect the IP cells at the required 
frequencies.

The reference design uses 
approximately 42% of the XLR cells 
within the device, leaving ample 
room for additions, including 
custom applications such as edge 
ML.

Table 2: Snapshot of the interface and 
I/O resources used. Image source: Adam 
Taylor

Table 3: Timing implementation against the constraints 
shows the potential of the Titanium FPGA XLR structure to 
reduce the possible routing delay, thereby increasing design 
performance. Image source: Adam Taylor

Figure 5. Clock constraints for the reference design.  
Image source: Adam Taylor

Usage of the block RAM and digital 
signal processing (DSP) blocks is 
also very efficient, using only 4 of 
the 640 DSP blocks and 40% of the 
memory blocks (Table 1).

At the device IO, the DDR interface 
for the LPDDR4x is used to provide 
the application memory for the 
Sapphire SoC and the image frame 
buffers. All of the device-dedicated 
MIPI resources are utilized along 
with 50% of the phase lock loops 
(Table 2).

The general purpose I/O (GPIO) 
is used to provide the I²C 
communications along with several 
of the interfaces connected to 
the Sapphire SoC, including NOR 
FLASH, USB UART, and SD card. 
The HSIO is used to provide the 
high-speed video output to the 
ADC7511 HDMI transmitter.

One of the crucial elements when 
designing with FPGAs is not only 
implementing and fitting the design 
within the FPGA, but also being 
able to place the logic design within 
the FPGA and achieve the required 
timing performance when routed.

Long gone are the days of single-
clock-domain FPGA designs. There 
are several different clocks, all 
running at high frequencies in the 
Ti180 reference design. The final 
timing table shows the maximum 
frequencies achieved for the clocks 
within the system. This is where the 

Core Resources

Inputs 1264 / 3706

Outputs 1725 / 4655

XLRs 73587 / 172800

Memory Blocks 508 / 1280

DSP Blocks 4 / 640

Periphery  
Resource

DDR 1 / 1

GPIO 22 / 27

HSIO 20.0 / 59

JTAG User TAP 1 / 4

MIPI RX 4 / 4

MIPI TX 4 / 4

Oscillator 0 / 1

PLL 4 / 8

Timing

Worst Negative Slack (WNS) 0.182 ns

Worst Hold Slack (WHS) 0.026 ns

i_pixel_clk 211.909 MHz

tx_escclk 261.370 MHz

i_pixel_clk_tx 210.881 MHz

i_sys_clk 755.858 MHz

i_axi0_mem_clk 130.429 MHz

i_sys_clk_25mhz 234.577 MHz

i_soc_clk 187.231 MHz

i_hdmi_clk 233.918 MHz

mipi_dphy_rx_inst1_WORD_
CLKOUT_HS

273.973 MHz

mipi_dphy_rx_inst2_WORD_
CLKOUT_HS

262.881 MHz

mipi_dphy_rx_inst3_WORD_
CLKOUT_HS

204.290 MHz

mipi_dphy_rx_inst4_WORD_
CLKOUT_HS

207.598 MHz

mipi_dphy_tx_inst1_SLOWCLK 201.979 MHz

mipi_dphy_tx_inst2_SLOWCLK 191.865 MHz

mipi_dphy_tx_inst3_SLOWCLK 165.235 MHz

mipi_dphy_tx_inst4_SLOWCLK 160.823 MHz

jtag_inst1_TCK 180.505 MHz

requested timing performance can also be seen in the 
constraints (Figure 5), which have a maximum clock 
frequency of 148.5 megahertz (MHz) for the HDMI 
output clock.

Timing implementation against the constraints shows 
the potential of the Titanium FPGA XLR structure as it 
reduces the possible routing delay, thereby increasing 
design performance (Table 3).

Conclusion

The Ti180 M484 reference design clearly showcases 
the capabilities of Efinix FPGAs and the Ti180 in 
particular. The design leverages several of the 
unique I/O structures to implement a complex image 
processing path that supports several incoming MIPI 
streams. This image processing system operates 
under the control of a soft-core Sapphire SoC, which 
implements the necessary sequential processing 
elements of the application.

Why and how to use Efinix FPGAs for AI/ML imaging – Part 2: Image capture and processing

Table 1: Resource 
allocation on the Efinix 
architecture shows only 
42% of the XLR cells are 
used, leaving ample room 
for additional processes. 
Image source: Adam 
Taylor



56 57
we get technical

Powering the Edge: the 
evolution of AI from digital 
to neuromorphic systems 
for ultra-low power 
performance

compute’ can dramatically cut 
the power consumption for edge 
applications. The chip, built on 
a 12nm process at TSMC, has 
been benchmarked at 480frame/s 
handling YOLO AI video analysis 
on 16 HD streams simultaneously 
for embedded security camera 
applications.

The Axelera Metis chip is now on 
M.2 boards for easy integration 
with controllers and Hailo has 
been working with Raspberry Pi on 
its Pi 5 AI Kit. This brings access 
to the Hailo 8 AI accelerator to 
both professional and enthusiast 
creators for home automation, 
security and robotics based on the 
Raspberry Pi 5 board.

The AI Kit is designed for the 
Raspberry Pi 5 and uses the M.2 
HAT+ connection to add the Hailo-
8L M.2 AI acceleration module. 
This provides 13 TOPS of edge AI 
inference for computer vision and 
other edge AI applications.

The key for developers is that the 
accelerator is fully integrated with 
Raspberry Pi’s camera software 
stack and supports numerous out-
of-the-box AI applications through 
Hailo’s software suite and model 
zoo.

This enables Raspberry Pi’s 
industrial customers to integrate 
AI into high-performance 
solutions that are extremely cost-
effective and power-efficient. For 
enthusiasts, the AI Kit provides an 
accessible way to enhance their 
creative projects with AI.

 Figure 1: An Edge AI evaluation 
board from Infineon Technologies

There are many types of machine 
learning. AI implemented at the 
Edge of the network and embedded 
into devices is bringing significant 
advantages in performance and 
power consumption.

But there are also many other 
types of AI and machine learning 
algorithms being used in all kinds 
of different places, not just the data 
centre. The technology has been 
evolving from digital deep neural 
networks (DNN) and convolutional 
neural networks (CNNs) to 
transformer networks. 

At the same time some of these 
embedded AI chips are using 
analog approaches for more 
performance at much lower power, 
particularly for processing signals 
from sensors locally without having 
to send the data to the Cloud.  

All these digital and analog 
technologies are also coming 

a warehouse or person monitoring 
in the smart home.

One of the challenges is that data 
from sensors has a lot of zeros. 
This sparsity of data is a major 
challenge for digital AI chips, which 
previously have had to process 
data whether it is a 0 or a 1. The 
latest designs tackle this sparsity 
head on, reducing the amount of 
processing required and so the 
amount of energy used. 

Femtosense in the US for example 
has designed an AI accelerator that 
is optimised for sparse networks, 
both reducing the amount of data 
and operating directly on the 
compressed data flow. This allows 
the AI framework to fit into memory 
on the chip, with 1Mbit of SRAM 
available in the first generation chip, 
slashing the power consumption of 
the edge AI operations. 

Building the chip on a 22nm fully 
depleted silicon on insulator (FD 
SOI) process also helps reduce the 
power consumption even further. 
Rather than putting the chip down 
on a PCB it has been combined 
with a 40nm microcontroller in 
the same package to make it even 
easier for engineers to use without 
it being too expensive.

There are quite a few accelerators 
for all kinds of applications. 
Hailo and Ambarella are seeing 
success in driver safety systems, 
and self-driving cars and trucks, 
while Axelera has developed an 
architecture that handles the AI 
models in memory. This ‘in memory  

together to provide lower power 
and more performance.

Image recognition and computer 
vision that has been a stalwart 
application of AI, reliably identifying 
defects on the production line at 
speeds beyond the human eye. This 
AI capability is moving further to 
the Edge of the network, down to 
sensors in the field. 

Embedded microcontrollers 
from STMicroelectronics, NXP 
Semiconductors, Renesas 
Electronics, Infineon Technologies 
and Analog Devices have all kinds 
of different types of digital AI 
accelerator blocks alongside their 
CPU cores, often dedicated to 
particular applications, whether 
that’s refining sensor data, 
correcting for errors or pattern 
recognition for images for spoken 
words.

Embedded algorithms are moving 
from digital signal processing 
(DSP) to CNNs to transformers for 
object recognition and detection 
and pose detection, whether 
that’s for fault inspection on a 
production line, shelf monitoring in 

Contributed By DigiKey’s 
European Editors
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Syntiant is also adding in AI 
accelerators for handling 
sensor data. Its Neural 
Decision Processors (NDPs) 
are specifically designed to run 
deep learning models, providing 
100x the efficiency and 10/30x 
the throughput of existing low-
power microcontrollers. These 
NDPs can be used for acoustic 
event detection for security 
applications to video processing in 
teleconferencing and equip almost 
any device with real-time data 
processing and decision making 
with near-zero latency and without 
the need for libraries or compilers.

Analog Edge AI 

These are all digital AI 
implementations, but as every 
engineer knows, there is often 
another way.

One increasingly  popular approach 
is neuromorphic, or spiking, AI. 
Neuromorphic is replicating 

the structure of the brain, with 
interconnected neurons. When a 
signal is detected, a spike of data 
propogates thorough the network. 
These spiking networks are much 
lower power as they only use the 
neurons in the path. 

These can be used for always 
on audio detectors in chips from 
companies such as POLYN, 
or an image processor from 
Prophesee which is teamed with 
the Akida spiking neural network 
from Brainchip as IP that can be 
integrate into other chips.

POLYN in Cambridge, UK, 
developed its Neuromorphic Analog 
Signal Processing (NASP) to handle 
any type of sensor and add all 
kinds of edge AI algorithms. The 
neurons in the chip are  neurons 
are physically implemented as an 
analog circuitry elements according 
to the mathematical simulation of 
a single neuron, and optimised for 
TinyML algorithms.

TinyML cuts down the amount of 
data that needs to be processed 
with various techniques such as 
embeddings. An embedding is a 
function that can map a discrete 
list of values into a continuous 
vector to be processed by an edge 
AI engine and is easier to train.

This allows the AI computations 
can be performed directly on the 
device and do not require users to 
send data to the cloud or a remote 
server.

The NASP chips are true Tiny AI 

implementations that improve 
latency and power consumption, 
and enable inference computations 
directly on devices like wearables, 
IoT sensors and more, increasing 
their functionality but also 
improving users’ privacy as the data 
stays on the device.

Polyn has various implementations 
for its analog AI, handling vibration 
data to extract useful data from 
a sensor or to watch for and 
recognise a wake word or for 
voice control. Algorithm-based 
data compression does not work 
for noisy signals because of the 
fundamentally linear aspect of 
algorithms. Neural networks on 
the other hand can extract useful 
information even from very noisy 
data, due to a non-linear way they 
process data. 

Some deep neural network 
architectures such as NASP prove 
to be exceptionally well suited for 
addressing vibration monitoring 
challenges.

Dutch neuromorphic AI chipmaker 
Innatera has combined an ultra-

low-power spiking neural network 
engine and a custom 32bit 
microcontroller core using the open 
RISC-V instruction set architecture 
(ISA) with 384 KB of embedded 
SRAM memory. This creates a 
single chip that processing sensor 
data quickly and efficiently with 
power consumption under 1mW. 
This is similarly being used for 
signal processing and pattern 
recognition tasks using spiking 
neural networks alongside DNNs 
and conventional processing in the 
same device. All of this fits into 
a 2.16mm x 3mm chip in a 35 pin 
wafer scale package 

There is also a key trend to 
combining analog neuromorphic AI 
and digital AI technologies.

The first generation of the Akida 
neural spiking processor developed 
by Brainchip has been evaluated 
by NASA for handling sensors on 
space missions, and the second-
generation now includes Temporal 
Event Based Neural Nets (TENN) 
spatial-temporal convolutions that 
supercharge the processing of raw 

 Figure 2: Combining a sparse neural 
network accelerator with an ARM 
microcontroller in a single package 

 Figure 4: The Syntiant neural decision 
processor

 Figure 5: The NASP chip from POLYN

time-continuous streaming data, 
such as video analytics, target 
tracking and audio classification. 
This can boost the analysis of MRI 
and CT medical scans for vital 
signs prediction, and time series 
analytics used in forecasting, and 
predictive maintenance to highlight 
when equipment is going to fail so 
that repairs can be scheduled.. 

 The TENNs allow for radically 
simpler implementations by 
consuming raw data directly 
from sensors. Like the Polyn 
and Innatera approaches, this 
drastically reduces model size 
and operations performed, while 
maintaining very high accuracy. 
This can shrink design cycles and  
lower the cost of development 
for customers such as Renesas 
Electronics.

But Brainchip has also added 
in support for digital Vision 
Transformers (ViT) acceleration 
for image classification, object 
detection, and semantic 
segmentation. This allows it to 
self-manage the execution of 
complex networks like RESNET-50 
completely in the neural processor 
without CPU intervention and 
minimizes system load.

The Akida IP platform can 
also learn on the chip, allowing 
continuous improvement and data-
less customization that improves 
security and privacy. This is being 
used in secure, small form factor 
devices like hearable and wearable 
devices, that take raw audio input, 
medical devices for monitoring 
heart and respiratory rates and 
other vitals that consume only 
microwatts of power. 

This can scale up to HD-resolution 
vision solutions delivered through 
high-value, battery-operated or 
fanless devices enabling a wide 
variety of applications from 
surveillance systems to factory 
management and augmented 
reality to scale effectively.

All of this marks the combination 
of the spiking and digital neural 
networks, with a focus on ultra 
low power. This combination of 
technologies is potentially a key 
step forward for scaling up the 
size and performance of all kinds 
of embedded AI systems without 
driving up the power consumption. 

Powering the Edge: the evolution of AI from digital to neuromorphic systems for ultra-low power performance

Figure 3: The Hailo 8 is the first 
AI accelerator to be added to the 
Raspberry Pi 5 single board computer 

Figure 6: The Akida 1000 neuromorphic 
AI IP
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All about AI/machine 
learning

Ants are fascinating creatures. 
When they leave their nest in 
search of food, they initially wander 
randomly, leaving pheromones 
along their path. Once an ant 
finds food, it returns to the nest, 
reinforcing the trail with more 
pheromones. Other ants follow this 
strengthened trail and continue to 
add pheromones, making it even 
more prominent. Occasionally, 
ants wander off the trail and if 
they discover a shorter path to the 
food, the trail will gradually shift to 
follow this new route. Over time, 
this process transforms a weak and 
meandering trail into a streamlined 

ant superhighway.

The process of how ants explore 
their environment is similar to how 
brains learn, and machine learning 
algorithms operate: They start by 
exploring many possibilities; they 
identify successful outcomes; and 
then they optimize and reinforce 
pathways to make the connections 
more efficient over time. 

This article covers how machine 
learning works, its relation to the 
ant analogy, and encourages you to 
consider using machine learning in 
your next project!

Input Raw Data Outputs

Interpretation Algorithms Processing

Machine learning basics

When laymen hear the term 
artificial intelligence, their thoughts 
often turn to the intelligent, 
personified machines and 
humanoid robots often seen in 
movies and television – machines 
capable of completing any task, 
who inevitably turn on their creators 
in a bid to take over the world. 

Reality is quite different – 
machines are only able to learn 
one task at a time, and once their 
training stops, their ability to evolve 
stops with it. Machine learning 
‘intelligence’ is restricted to the 
completion of a single task and 
is frozen in time. For example, a 
camera trained to detect vehicle 
license plate numbers, can only 
ever detect license plate numbers. 
It cannot ‘evolve’ to edit the 
grammar in written documents.

What is machine learning?

Machine learning is one type of 
artificial intelligence that uses 
advanced algorithms and a trove of 
data to teach computers to make 
predictions. Unlike the omnipotent 
robots of science fiction, machine 
learning models can only 
perform specific, isolated tasks, 
such as image recognition and 
classification, language translation, 
or trend detection. There are 
three types of machine learning: 
supervised learning, unsupervised 
learning, and reinforcement 
learning.

Types of learning

Supervised learning
Supervised learning involves pairing 
known inputs with known outputs. 
For example, how do computers 
learn to recognize handwritten 
digits when each person’s 
handwriting is unique?

The MNIST database (http://yann.
lecun.com/exdb/mnist/) contains 
70,000 examples of handwritten 
digits (0-9) collected from the 
National Institute of Science and 
Technology Standard Reference 
Data Special Database 1 and 3. 
Researchers collected hundreds 
of thousands of handwritten 
characters and meticulously 
labeled each one with the correct 
digit. This dataset is used to train 
computer models to automatically 
recognize digits.

By using this dataset, computer 
scientists can train and test their 
algorithms with known correct 
answers. This approach ensures 

that the algorithm learns accurately 
without deviating from the correct 
path, which is the essence of 
supervised learning.

Unsupervised learning
Unsupervised learning algorithms 
identify patterns, similarities, and 
differences in large datasets that 
might not be visible to humans. 
Mathematicians discovered long 
ago how to determine correlation 
between a single dependent and 
independent variable, and even 
how to use advanced statistical 
techniques to find a relationship 
between two or three independent 
and one or two dependent 
variables. But sometimes the 
relationship between the variables 
is obfuscated by hidden variables. 
For those cases, machine learning 
takes over in order to determine 
hidden relationships.

By feeding the raw input data 
into the model and letting the 
algorithms experiment, it is 
possible to determine relationships, 

Figure 1: The image illustrates unsupervised learning. In unsupervised 
learning, a large assortment of data is fed into an algorithm whose job it 
is to find patterns, coincidences, and anomalies. The algorithm sorts the 
data in a manner that suits it.
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groupings, and outliers.

The image above illustrates 
unsupervised learning. In 
unsupervised learning, a large 
assortment of data is fed into 
an algorithm whose job it is to 
find patterns, coincidences, and 
anomalies. The algorithm sorts the 
data in a manner that suits it.

As an example: Every day, 
newspapers around the world 
produce articles on a wide variety 
of topics. These articles are often 
published online, which makes 
them available as raw input 
data for search engines. Using 
unsupervised learning, it is possible 
for Google and other websites to 
analyze the data and cluster similar 
articles together for a reader.

Reinforcement learning
Reinforcement learning is a 
process where positive feedback 
is given after a desired action 
to increase the likelihood of it 
happening again, and negative 
feedback is provided to decrease 

the likelihood of an undesirable 
action being repeated. 

Learning piano
Imagine a student learning to 
play a piano, but the piano has 
all its strings cut. Without sound 
from key presses, there is no 
feedback, making it impossible 
for the student to know if they 
played the correct or incorrect key. 
Consequently, no reinforcement 
learning can take place. Now, 
picture the same student with a 
properly tuned piano. Each key 
press produces a sound. If the 
sound matches the student’s 
expectations, it serves as positive 
reinforcement. If the sound is 
unpleasant or unexpected, it acts 
as negative reinforcement.

Ant traIls
An ant that follows a pheromone 
trail to a food supply will strengthen 
the trail by depositing more 
pheromones. If the trail leads to 
an exhausted food supply, the ants 
will wander elsewhere and the 

pheromones will dissipate. With a 
higher pheromone concentration, 
there is an increased likelihood 
that more ants will follow. With 
fewer pheromones, the lower the 
likelihood that ants will follow that 
trail.

Early machine learning
In the mid-1990s, computer 
scientists developed TD-
Gammon, an algorithm that 
learned to play backgammon 
through reinforcement learning. 
Initially, it made random moves 
and received feedback based on 
the outcomes of those moves. 
Actions that increased the game’s 
expected score received positive 
reinforcement by increasing a 
reward variable, while actions that 
decreased the expected score 
received negative reinforcement 
by decreasing the reward variable. 
The algorithm was programmed to 
maximize the cumulative reward. 
Through trial and error, it gradually 
learned which decisions maximize 
the reward and win the game!

Reinforcement review
This basic process of positive 
and negative reinforcement – 
increasing or decreasing the 
likelihood of a behavior – is how 
humans, insects, and machines 
learn. Brains make neuronal 
connections, ants make trails, and 
computers increase or decrease 
the values of variables.

It is important to train using data 
that is appropriate for the task and 
free of unnecessary information 
when possible. This approach 
reduces the computational 
complexity of the training process. 

Relation to machine learning
Machines interact with the world 
around them through a series of 
inputs and outputs. The inputs 
often come from sensors or data 
files, while the outputs can be 
screens, actuators, or data files. By 
training models on data obtained 
from sensors, you can develop 
systems that understand and 
respond to their environments in 
near real-time. For instance, in 
autonomous driving, sensor data 

helps vehicles navigate and make 
decisions safely and efficiently. In 
personalized medicine, machines 
analyze patient data to allow 
doctors to better diagnose and 
treat patients.

The ability to process and learn 
from diverse data sources is crucial 
for advancements in machine 
learning. 

Real-world applications of 
machine learning

Algorithms need data, and there are 
a wide number of sensors available 
for use today. Often the outputs of 
a variety of sensors are combined 
– a process called sensor fusion. 
Sensor fusion combines the data 
from multiple sensors in different 
proportions to create a dataset 
product that is greater than the 
sum of its parts. For example, 
smartphones combine data from 
GPS, accelerometers, gyroscopes, 
magnetometers, and the camera 
to determine where it is in space. 
The result allows for a variety of 
augmented reality experiences, 
such as Pokemon Go!, or Google 
Maps indoor navigation.

In automobiles
Modern automobiles have 
dozens of sensors, including 
transmission-speed, wheel-speed, 
steering-angle, suspension-height, 
tire-pressure, accelerometers, 
yaw-rate, microphone arrays, and 
more. I chose to list these sensors 
in particular because a company 
called Tactile Mobility fuses the 
data from these sensors to produce 
a very detailed picture of road 
conditions. Application specific 
algorithms are able to analyze all 
of the sensor data coming out of 
a vehicle and determine which 
vehicle-type produced the data, 
what condition the tires are in, what 
road the vehicle was traveling on, 
and even the specific lane of travel 
– all without using GPS. 

In healthcare
Healthcare combines several data 
points together to provide a picture 
of patient health. A patient’s vitals 
include: blood pressure, pulse rate, 
respiratory rate, and temperature. 
Other data, such as the results of 
a Complete Blood Count (7 tests) 
and a Comprehensive Metabolic 
Panel (14 tests) can identify which 

Just right! Overfitting

Figure 2: Neural networks are often 
shown as a diagram similar to the 
one pictured above. Data arrives 
and is stored in an input layer (the 4 
neurons shown on left). From there, 
there are   ‘hidden-layers’ that form 
connections to output layers. In 
this image there are two sets of 
6 neurons in the hidden layers, 
and two neurons in the output 
layer. The training task determines 
how input layers are ultimately 
connected to output layers through 
the hidden layers

Figure 3: An example of a model that’s ‘Just right!’ and Overfitting

All about AI/machine learning
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organs might be functioning poorly 
and might require further testing. 
Doctors learn to interpret the data 
and generate results after years of 
intense education and practice. But 
researchers also train computers 
to fuse the data from the various 
sources and produce a list of likely 
causes of an illness.

As another example, amputees 
today have more options than the 
peg-legged pirate of centuries 
past. Modern prosthetics now 
can include accelerometers, 
gyroscopes, magnetometers, 
pressure sensors, force sensors, 
and electromyography (muscle) 
sensors to provide enhanced 
capabilities and natural movement. 
The data from the sensors allows 
a prosthetic to know where it is in 
space and interact with the nervous 
system without having to merge 
with the nervous system.

Looking forward
Now, it is time to learn how neural 
networks work, and hopefully 
demystify the process enough that 
you’ll be confident enough to try it 
out on your own. 

The learning process

Machine learning is an involved 

process that requires significant 
amounts of data and processing 
power. The steps include: data 
collection, error detection, and 
deployment. 

Neural networks, a type of 
processor, feed sensor data into 
an input layer. The input layer then 
passes the data to a series of 
hidden layers containing neurons, 
and eventually to the output layer. 
The computationally intensive part 
of training involves determining the 
values of the individual neurons.

Neural networks are often shown 
as a diagram similar to the one 
pictured above. Data arrives and is 
stored in an input layer (the 4 blue 
neurons shown on left). From there, 
there are multiple 
‘hidden-layers’ that 
form connections to 
output layers. In this 
image there are two 
sets of 6 neurons in 
the hidden layers, 
and two neurons 
in the output layer. 
The training task 
determines how 
input layers are 
ultimately connected 
to output layers 
through the hidden 
layers

Data collection

Substantial amounts of data 
are required to properly train a 
model. In the handwriting example 
mentioned at the start of the article, 
sixty-thousand of the seventy-
thousand handwritten digits were 
used to train a detection algorithm. 

Data preprocessing

Computer scientists enjoy saying 
“Garbage in equals Garbage out.” 
Which means the data fed into 
an algorithm will impact its later 
performance. For this reason, if 
you’re training an algorithm to 
detect handwritten digits, you 
cannot accidentally include a few 
hundred photographs of your cat or 
newborn child. 

You must evaluate the data for 
missing values, outliers, duplicates, 
etc. to ensure that the best possible 
dataset is fed to the computer 

for training. Normalizing the data 
provides mathematical reductions 
in the computational complexity 
and reduces the amount of required 
memory since all values will fall in a 
known range.

Finally, split the data into two 
batches - one large batch for 
training the algorithms, and a 
second smaller batch for testing 
the quality of the training.

Training and deployment 
resources

Training often requires a 
substantial number of addition and 
multiplication calculations and a 
lot of available memory. At times 
you can train a model at home 
on powerful computing devices 
such as the NVidia Jetson series 
of Single-Board-Computers or 
graphics cards, and other times 
training involves server farms at 
data-centers. Training will take 
anywhere between a few hours and 
a few months depending on the 
complexity of the model and the 
available processing power. 

One reason training is so 
computationally expensive 
compared to deployment is 
the sheer volume of data used 
in training as well as the need 
for both forward and backward 
propagation to determine the value 
of each neuron. Once training 
determines the value of each 
neuron, deployment is far more 
straight-forward. Remembering the 

ant analogy, lots of ants are initially 
needed to find a food source, many 
more are needed to refine and 
streamline the trail, but once the 
trail is established, a single ant can 
mindlessly follow it without much 
effort. 

Training tips

For neural networks, the data has to 
be sufficiently shuffled to properly 
train. If you were to feed a digit-
recognition model six-thousand 
images of the number 0, followed 
by six-thousand images of the 
number 1, then 2, etc. the neural 
net would not properly form, and no 
useful predictions could be made. 
Proper shuffling ensures that the 
model learns to generalize from the 
data rather than memorizing the 
order of the inputs.

The scatterplots above are often 
used to illustrate the goal of 
training. Algorithms attempt to find 
models that fit the data reasonably 
well without over-training. 
Overtraining means the model will 
detect the training data with high 
accuracy, and the testing data with 
very low accuracy.

It is important not to over-train 
a model. There is always a bit 
of statistical variation, gaussian 
noise, or error in the datasets. A 
properly trained model will ignore 
the noise of the training dataset. An 
overtrained model will learn that the 
noise is important, and part of the 
dataset. As an example, imagine 
you’ve got a list of temperatures, 

measured at noon at a single 
location over the course of a year. 
A properly trained dataset will fit 
a smooth sinusoidal curve to the 
scatterplot, while an overtrained 
dataset will resemble a scatter plot 
connected with sharp lines.

Summary

Machine learning is a powerful 
tool, but it is task specific and 
lacks the general intelligence seen 
in Science Fiction movies and 
fantasy novels. The models used 
to generate outputs are dependent 
on the quality of the training 
process and are not capable of 
generalization to new areas - a 
model trained to correct grammar 
cannot be used to identify license 
plate numbers in security footage. 
In contrast, the human brain has 
no such limitations - its ability to 
identify, abstract, and generalize 
the world around it is seemingly 
boundless.  The hopes of having an 
Android companion are well beyond 
the limits of technology for the 
foreseeable future.

In recent years, advances in 
computers have made training 
and deploying models accessible 
and affordable to everyone, 
democratizing AI for everyone with 
even basic programming skills. To 
learn more, please see the excellent 
work done by our very own Shawn 
Hymel here at Digikey.com!

Machine learning is a powerful tool, but 
it is task specific and lacks the general 
intelligence seen in Science Fiction movies 
and fantasy novels. 

All about AI/machine learning



66


