
1
we get technical

We get
technical
How to use FPGA
SoCs for secure and
connected hard real-time
systems

How automation,
machine learning, and
Blockchain are driving
the future of electronics
manufacturing

Quickly implement
spoofing-resistant face
recognition without a
Cloud connection

Why and how to use
Efinix FPGAs for AI/ML
imaging

Edge AI and ML I Volume 10

2 3
we get technical

2

co
nt

en
ts

Editor’s note
Edge AI and machine learning have transformed the way
systems and devices process data, enabling real-time
decision-making at the source rather than relying on
remote servers. As engineers navigate the rapid evolution
of technology, understanding and applying these concepts
have become crucial for developing intelligent, autonomous
systems across a range of industries, from manufacturing to
healthcare.

Edge AI refers to the deployment of artificial intelligence
algorithms on Edge devices, which are located at the
periphery of a network, close to the data source. These
devices are equipped with enough processing power to
handle AI computations locally. This eliminates the need
to send large volumes of data to a centralized Cloud for
analysis, drastically reducing latency, bandwidth usage, and
energy consumption. In many industrial applications, where
immediate responses are critical, these advantages make
Edge AI an attractive option.

Machine learning is the driving force behind the AI revolution,
empowering systems to learn from data and improve their
performance over time without explicit programming. When
combined with Edge computing, machine learning enables
the creation of systems that can operate autonomously,
make decisions in real time, and adapt to changing
conditions on the fly. This combination is already being
applied in predictive maintenance, robotics, autonomous
vehicles, and industrial automation.

As the demand for intelligent, connected devices continues
to rise, engineers must stay ahead of the curve by embracing
Edge AI and machine learning. These technologies are
no longer confined to large-scale enterprises with vast
resources but are increasingly accessible to a wider range
of industries and applications. By understanding how to
implement and optimise Edge AI and machine learning,
engineers can create more responsive, efficient, and secure
systems that will drive the next wave of innovation.

For more information,
please check out our website at
www.digikey.com/automation.

4 AI development potential with the
Agilex 5 system on module

8
How to run a ‘Hello World’
machine learning model on STM32
microcontrollers

14
How to use FPGA SoCs for secure
and connected hard real-time
systems

20
Special feature: retroelectro
Programming a calculator to form
concepts: the birth of artificial
intelligence	

28
How automation, machine learning,
and Blockchain are driving the
future of electronics manufacturing

34
Quickly implement spoofing-
resistant face recognition without a
Cloud connection

44
Why and how to use Efinix FPGAs
for AI/ML imaging – Part 1: getting
started

50
Why and how to use Efinix FPGAs
for AI/ML imaging – Part 2: Image
capture and processing

56
Powering the Edge: The Evolution
of AI from Digital to Neuromorphic
Systems for Ultra-Low Power
Performance

60 All about AI/machine learning

4 5
we get technical

Artificial Intelligence (AI) is
revolutionizing various industries
by providing transformative
solutions that significantly enhance
efficiency, accuracy, and the ability
to make informed decisions. In this
landscape, the concept of Edge
AI – processing AI algorithms on
devices located at the Edge of a
network – has emerged as a game-
changing approach. It allows for
real-time data processing, reduced
latency, improved data privacy,
and autonomy in decision-making,
especially critical in sectors like
healthcare, robotics, and industrial
automation.

iWave, a pioneering force in
embedded systems engineering, is
at the forefront of this revolution,
offering embedded platforms
designed to push the boundaries of
AI at the Edge. These platforms are
specifically tailored for applications
requiring high-performance
computing and sophisticated AI/

ML capabilities, such as media
processing, robotics, and visual
computing.

Introducing iW-RainboW-
G58M: the next generation
of AI-infused FPGAs

In a significant advancement for
the embedded systems market,
iWave is thrilled to introduce the
iW-RainboW-G58M System on
Module (SoM) (Figure 1), powered
by the Intel Agilex 5 FPGA. This
is the first FPGA to feature AI
capabilities integrated directly into
its fabric, marking a new era in
FPGA technology. The iW-RainboW-
G58M is meticulously engineered
for applications demanding
high-performance, low-latency
processing, and custom logic
implementation with embedded
AI/ML support, making it an ideal
choice for industries such as
medical imaging, robotics, and
industrial automation.

The iW-RainboW-G58M SoM is
compact, measuring just 60mm
x 70mm, yet it is packed with
powerful features. It supports
the Intel Agilex 5 FPGA and
SoC E-Series family in the B32A
package, available in two distinct
device variants to cater to a range
of application needs:

	■ Group A: A5E
065A/052A/043A/028A/013A
SoC FPGA – These variants
offer higher performance and
are suitable for applications
requiring more complex
processing capabilities

	■ Group B: A5E 065B/052B/043B/
028B/013B/008B SoC FPGA
– These variants provide cost-
effective solutions for less
demanding tasks, ensuring
flexibility in design and
implementation

The combination of these options
allows developers to select the
most appropriate FPGA variant for
their specific application, balancing
performance, power consumption,
and cost.

Harnessing the full potential
of Intel Agilex 5 FPGAs for
Edge AI

Intel’s Agilex 5 FPGAs and SoCs
represent a significant leap forward
in FPGA technology, especially
in the context of AI and machine
learning applications at the Edge.
The Agilex 5 series builds on Intel’s
legacy of AI-optimized FPGAs,
introducing the industry’s first AI
tensor block in a mid-range FPGA.
This block is specifically designed
to accelerate AI workloads, making
these FPGAs a perfect fit for edge
AI applications where real-time
processing and decision-making
are critical.

A key feature of the Agilex 5 FPGA
is its asymmetric applications
processor system, which includes
dual Arm Cortex-A76 cores and
dual Cortex-A55 cores. This
configuration allows the FPGA to
deliver exceptional processing
power while optimizing power
efficiency, a crucial factor in Edge

AI development potential
with the Agilex 5 system
on module

Written by:
Tawfeeq Ahmad

Figure 1. The iWave iW-RainboW-G58M
SoM, powered by the Intel Agilex 5
FPGA which is the first FPGA to feature
directly integrated AI capabilities.
Image source: iWave

https://www.digikey.com/en/supplier-centers/intel

6 7
we get technical

computing environments where
power consumption must be
minimized without compromising
performance.

The Agilex 5 FPGA also includes
enhanced Digital Signal Processing
(DSP) capabilities, integrated
with an AI tensor block. This
combination allows the FPGA to
handle complex AI tasks such
as deep learning inference,
image processing, and predictive
analytics with greater efficiency
and accuracy. Moreover, the
FPGA’s advanced connectivity
features, including high-speed GTS
transceivers that support data
rates up to 28.1 Gbps, PCI Express*
(PCIe*) 4.0 × 8, and outputs for
DisplayPort and HDMI, make it a
versatile solution for a wide range
of applications.

Comprehensive AI/ML
software ecosystem:
accelerating development

The iW-RainboW-G58M SoM is
complemented by a comprehensive
software ecosystem that
significantly accelerates AI and
machine learning development.
Central to this ecosystem is the
support for popular AI frameworks
such as TensorFlow and PyTorch,
ensuring that developers can
leverage these familiar platforms
to create sophisticated AI models
without steep learning curves.

A critical component of this
ecosystem is the OpenVINO
toolkit. This open-source toolkit is
designed to optimize deep learning
models for inference on a variety of
hardware architectures, including

CPUs, GPUs, and FPGAs. By using
the OpenVINO toolkit, developers
can ensure that their AI models are
not only optimized for performance
but are also highly portable across
different hardware platforms,
allowing for greater flexibility in
deployment.

Additionally, the Intel FPGA AI Suite
plays a pivotal role in simplifying
the development process. This
suite is designed with ease of use
in mind, enabling FPGA designers,
machine learning engineers, and
software developers to create AI
platforms that are optimized for
FPGA architectures. By integrating
with industry-standard tools such
as TensorFlow, PyTorch, and the
OpenVINO toolkit, the Intel FPGA
AI Suite allows developers to
speed up the development process

AI development potential with the Agilex 5 system on module

while maintaining a high degree of
reliability and performance in their
AI solutions.

The suite also integrates
seamlessly with the Intel Quartus
Prime FPGA design software, a
powerful tool that supports the
design, analysis, and optimization
of FPGA-based systems. This
integration ensures that developers
have access to a robust and proven
workflow, reducing time to market
and enhancing the overall reliability
of their AI applications.

Cloud AI vs. Edge AI: a
comparative analysis

As AI continues to evolve, the
distinction between Cloud AI and
Edge AI becomes increasingly
important. Cloud AI, which relies on
the vast computational resources
of remote data centers, offers high
scalability and the ability to process
large volumes of data. However,
this approach often comes with
higher latency and potential
security concerns due to the need
for data transmission over the
internet.

On the other hand, Edge AI offers
significant advantages in scenarios
where real-time processing, low
latency, and enhanced data privacy
are critical. By processing data
locally on the device, Edge AI
eliminates the need for constant
communication with the cloud,
reducing latency and improving
the responsiveness of AI systems.

This is particularly important in
applications such as autonomous
vehicles, industrial automation,
and healthcare, where delays in
decision-making can have serious
consequences.

Moreover, Edge AI contributes to
data privacy by keeping sensitive
information on the local device,
reducing the risk of data breaches
associated with cloud-based
processing. The hybrid approach,
where edge devices perform
initial data processing before
transmitting it to the cloud for more
complex analysis, is becoming
increasingly popular. This method
combines the strengths of both
Edge AI and Cloud AI, allowing
for efficient resource utilization,
enhanced security, and improved
system performance.

Ensuring longevity and
comprehensive support:
iWave’s commitment to
customers

One of iWave’s key commitments
is to ensure the long-term
availability of its products. The
company’s product longevity
program guarantees that its
System on Modules (SoMs) are
available for extended periods,
often exceeding 10 years. This is
especially important for industries
like medical devices, aerospace,
and industrial automation, where
product lifecycles are typically
long, and consistent component

availability is critical.

In addition to longevity, iWave
provides extensive technical
support throughout the product
development process. This support
includes ODM (Original Design
Manufacturer) services, such
as carrier card design, thermal
simulation, and system-level
design, allowing customers to
focus on their core competencies
while iWave handles the complex
aspects of hardware design and
integration.

iWave’s commitment to customer
success is further demonstrated
by the provision of comprehensive
evaluation kits for its SoMs.
These kits come with complete
user documentation, software
drivers, and a board support
package, enabling customers to
rapidly evaluate and prototype
their designs. By offering these
resources, iWave helps customers
reduce development time and bring
their products to market faster.

Summary

iWave’s iW-RainboW-G58M SoM,
with the Intel Agilex 5 FPGA that
features integrated AI capabilities,
is carefully engineered for
high-performance, low-latency
processing, and custom logic
implementation with embedded
AI/ML support applications.
This makes it a good choice for
industries such as medical imaging,
robotics, and industrial automation.

8 9
we get technical

Machine learning (ML) has been
all the rage in server and mobile
applications for years, but it has
now migrated and become critical
on Edge devices. Given that Edge
devices need to be energy efficient,
developers need to learn and
understand how to deploy ML
models to microcontroller-based
systems. ML models running on a
microcontroller are often referred to
as tinyML. Unfortunately, deploying
a model to a microcontroller is not

a trivial endeavor. Still, it is
getting easier, and developers
without any specialized
training will find that they can
do so in a timely manner.

This article explores how
embedded developers
can get started
with ML using
STMicroelectronics’
STM32
microcontrollers. To
do so, it shows how
to create a ‘Hello
World’ application
by converting a
TensorFlow Lite for
Microcontrollers
model for use in
STM32CubeIDE using
X-CUBE-AI.

The next use case for tinyML that
many embedded developers are
interested in is image recognition.
The microcontroller captures
images from a camera, which are
then fed into a pre-trained model.
The model can discern what is in
the image. For example, one might
be able to determine if there is
a cat, a dog, a fish, and so forth.
A great example of how image
recognition is used at the edge is in
video doorbells. The video doorbell
can often detect if a human is
present at the door or whether a
package has been left.

One last use case with high
popularity is using tinyML
for predictive maintenance.
Predictive maintenance uses
ML to predict equipment states
based on abnormality detection,
classification algorithms, and
predictive models. Again, plenty of
applications are available, ranging
from HVAC systems to factory floor
equipment.

While the above three use cases are
currently popular for tinyML, there
are undoubtedly many potential
use cases that developers can find.

How to run a ‘Hello World’
machine learning model
on STM32 microcontrollers
Written by: Jacob Beningo

Introduction to tinyML use
cases

TinyML is a growing field that
brings the power of ML to resource
and power-constrained devices
like microcontrollers, usually using
deep neural networks. These
microcontroller devices can then
run the ML model and perform
valuable work at the edge. There
are several use cases where tinyML
is now quite interesting.

The first use case, which is seen
in many mobile devices and home
automation equipment, is keyword
spotting. Keyword spotting allows
the embedded device to use a
microphone to capture speech
and detect pretrained keywords.
The tinyML model uses a time-
series input that represents the
speech and converts it to speech
features, usually a spectrogram.
The spectrogram contains
frequency information over time.
The spectrogram is then fed into
a neural network trained to detect
specific words, and the result is a
probability that a particular word
is detected. Figure 1 shows an
example of what this process looks
like.

Figure 1. Keyword spotting is an interesting use case for tinyML. The input
speech is converted to a spectrogram and then fed into a trained neural
network to determine if a pretrained word is present. Image source: Arm

https://www.digikey.com/en/supplier-centers/stmicroelectronics
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.digikey.com/en/supplier-centers/arm

10 11
we get technical

Here’s a quick list:
	■ Gesture classification
	■ Anomaly detection
	■ Analog meter reader
	■ Guidance and control (GNC)
	■ Package detection

No matter the use case, the best
way to start getting familiar with
tinyML is with a ‘Hello World’
application, which helps developers
learn and understand the basic
process they will follow to get a
minimal system up and running.
There are five necessary steps to
run a tinyML model on an STM32
microcontroller:

1.	 Capture data

2.	 Label data

3.	 Train the neural network

4.	 Convert the model

5.	 Run the model on the
microcontroller

Capturing, labelling, and
training a ‘Hello World’
model

Developers generally have many
options available for how they will
capture and label the data needed
to train their model. First, there are
a lot of online training databases.
Developers can search for data
that someone has collected and
labelled. For example, for basic
image detection, there’s CIFAR-10
or ImageNet. To train a model to
detect smiles in photos, there’s an
image collection for that too. Online

data repositories are
clearly a great place to
start.

If the required data
hasn’t already been
made publicly available
on the Internet, then
another option is for
developers to generate
their own data. Matlab

or some other tool can be used to
generate the datasets. If automatic
data generation is not an option,
it can be done manually. Finally, if
this all seems too time-consuming,
there are some datasets available
for purchase, also on the Internet.
Collecting the data is often the
most exciting and interesting
option, but it is also the most work.

The ‘Hello World’ example being
explored here shows how to train
a model to generate a sine wave
and deploy it to an STM32. The
example was put together by Pete

Warden and Daniel
Situnayake as part of
their work at Google
on TensorFlow Lite
for Microcontrollers.
This makes the job
easier because they
have put together a
simple, public tutorial
on capturing, labelling,
and training the model.
It can be found on
Github here; once there,
developers should
click the ‘Run in Google

Colab’ button. Google Colab, short
for Google Colaboratory, allows
developers to write and execute
Python in their browser with zero
configuration and provides free
access to Google GPUs.

The output from walking through
the training example will include
two different model files; a model.
tflite TensorFlow model that is
quantized for microcontrollers and
a model_no_quant.tflite model that
is not quantized. The quantization
indicates how the model activations
and bias are stored numerically.
The quantized version produces a
smaller model that is more suited
to a microcontroller. For those

curious readers, the trained model
results versus actual sine wave
results can be seen in Figure 2. The
output of the model is in red. The
sine wave output isn’t perfect, but
it works well enough for a ‘Hello
World’ program.

Selecting a development
board

Before looking at how to
convert the TensorFlow model
to run on a microcontroller, a
microcontroller needs to be
selected for deployment in the
model. This article will focus on
STM32 microcontrollers because
STMicroelectronics has many
tinyML/ML tools that work well for
converting and running models. In
addition, STMicroelectronics has
a wide variety of parts compatible
with their ML tools (Figure 3).

If one of these boards are lying
around the office, it’s perfect for
getting the ‘Hello World’ application
up and running. However, for those
interested in going beyond this
example and getting into gesture
control or keyword spotting, opt
for the STM32 B-L4S5I-IOT01A

Discovery IoT Node (Figure 4).

This board has an Arm Cortex-M4
processor based on the STM32L4+
series. The processor has 2
megabytes (Mbytes) of flash
memory and 640 kilobytes (Kbytes)
of RAM, providing plenty of space
for tinyML models. The module
is adaptable for tinyML use case
experiments because it also has
STMicroelectronics’ MP34DT01
microelectromechanical systems
(MEMS) microphone that can
be used for keyword spotting
application development. In
addition, the onboard LIS3MDLTR
three-axis accelerometer, also from
STMicroelectronics, can be used
for tinyML-based gesture detection.

Converting and running
the TensorFlow Lite model
using STM32Cube.AI

Armed with a development board
that can be used to run the tinyML
model, developers can now start to
convert the TensorFlow Lite model
into something that can run on the
microcontroller. The TensorFlow
Lite model can run directly on the
microcontroller, but it needs a

runtime environment
to process it.

When the model is run,
a series of functions
need to be performed.
These functions start
with collecting the
sensor data, then
filtering it, extracting

 Figure 2. A comparison between
TensorFlow model predictions for a sine
wave versus the actual values. Image
source: Beningo Embedded Group

Figure 3. Shown are the microcontrollers and the microprocessor unit (MPU) currently
supported by the STMicroelectronics AI ecosystem. Image source: STMicroelectronics

Figure 4. The STM32 B-L4S5I-IOT01A
Discovery IoT Node is an adaptable
experimentation platform for tinyML
due to its onboard Arm Cortex-M4
processor, MEMS microphone, and
three-axis accelerometer. Image
source: STMicroelectronics

How to run a ‘Hello World’ machine learning model on STM32 microcontrollers

Figure 5. How data flows from sensors
to the runtime and then to the output
in a tinyML application. Image source:
Beningo Embedded Group

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/examples/hello_world/train/train_hello_world_model.ipynb
https://www.digikey.com/en/products/detail/stmicroelectronics/B-L4S5I-IOT01A/12395902
https://www.digikey.com/en/products/detail/stmicroelectronics/MP34DT01/3087727

12 13
we get technical

will give the developer the ability to
select the model file they created
and set the model parameters,
as shown in Figure 7. An analyze
button will also analyze the
model and provide developers
with RAM, ROM, and execution
cycle information. It’s highly
recommended that developers
compare the Keras and TFLite
model options. On the sine wave
model example, which is small,

for a full cycle results in the sine
wave shown in Figure 9. It’s not
perfect, but it is excellent for a
first tinyML application. From here,
developers could tie the output to a
pulse width modulator (PWM) and
generate the sine wave.

Tips and tricks for ML on
embedded systems

Developers looking to get started
with ML on microcontroller-
based systems will have quite a
bit on their plate to get their first
tinyML application up and running.
However, there are several ‘tips
and tricks’ to keep in mind that
can simplify and speed up their
development:

	■ Walk through the TensorFlow
Lite for microcontrollers ‘Hello
World’ example, including the
Google Colab file. Take some
time to adjust parameters and
understand how they affect the
trained model

	■ Use quantized models for
microcontroller applications. The
quantized model is compressed
to work with uint8_t rather than
32-bit floating-point numbers. As
a result, the model will be smaller

and execute faster
	■ Explore the additional examples

in the TensorFlow Lite for
Microcontrollers repository.
Other examples include gesture
detection and keyword detection

	■ Take the ‘Hello World’ example
by connecting the model output
to a PWM and a low-pass filter
to see the resultant sine wave.
Experiment with the runtime to
increase and decrease the sine
wave frequency

	■ Select a development board that
includes ‘extra’ sensors that will
allow for a wide range of ML
applications to be tried

	■ As much fun as collecting data
can be, it’s generally easier to
purchase or use an open-source
database to train the model

Developers who follow these ‘tips
and tricks’ will save quite a bit of
time and grief when securing their
application.

Conclusion

ML has come to the network
Edge, and resource-constrained
microcontroller-based systems
are a prime target. The latest tools
allow ML models to be converted
and optimized to run on real-time
systems. As shown, getting a
model up and running on an STM32
development board is relatively
easy, despite the complexities
involved. While the discussion
examined a simple model that
generates a sine wave, far more
complex models like gesture
detection and keyword spotting are
possible.

Figure 6. The X-CUBE-AI plug-in needs to be enabled using the application
template for this example. Image source: Beningo Embedded Group

there won’t be a huge difference,
but it is noticeable. The project
can then be generated by clicking
‘Generate code’.

 The code generator will initialize
the project and build in the runtime
environment for the tinyML model.
However, by default, nothing is
feeding the model. Developers need
to add code to provide the model
input values – x values – which the
model will then interpret and use to
generate the sine y values. A few
pieces of code need to be added to
the acquire_and_process_data and
post_process functions, as shown
in Figure 8.

At this point, the example is now
ready to run. Note: add some
printf statements to get the model
output for quick verification. A fast
compile and deployment results
in the ‘Hello World’ tinyML model
running. Pulling the model output

the necessary features, and feeding
it to the model. The model will
spit out a result which can then be
further filtered, and then – usually
– some action is taken. Figure 5
provides an overview of what this
process looks like.

The X-CUBE-AI plug-in to
STM32CubeMx provides the
runtime environment to interpret
the TensorFlow Lite model and
offers alternative runtimes and
conversion tools that developers
can leverage. The X-CUBE-AI plug-
in is not enabled by default in a
project. However, after creating
a new project and initializing the
board, under Software Packs->
Select Components, there is an
option to enable the AI runtime.
There are several options here;
make sure that the Application
template is used for this example,
as shown in Figure 6.

Once X-CUBE-AI is enabled, an
STMicroelectronics X-CUBE-
AI category will appear in the
toolchain. Clicking on the category Figure 7. The analyze button will provide developers with RAM, ROM, and

execution cycle information. Image source: Beningo Embedded Group

Figure 7. The analyze button will provide developers with RAM, ROM, and
execution cycle information. Image source: Beningo Embedded Group

Figure 9. The ‘Hello World’ sine wave model output when running
on the STM32. Image source: Beningo Embedded Group

How to run a ‘Hello World’ machine learning model on STM32 microcontrollers

14 15
we get technical

Written by: Jeff Shepard

How to use FPGA SoCs
for secure and connected
hard real-time systems

deterministic systems like artificial
intelligence (AI) and machine
learning (ML).

However, the integration of those
diverse elements into a secure,
connected, and deterministic
system can be a challenging
and time-consuming activity,
as is laying out the high-speed
interconnects for the various

14

system elements. Designers need
to include a memory management
unit, memory protection unit,
secure boot capability, and
gigabit-class transceivers for
high-speed connectivity. The
design will need active and static
power management and control of
inrush currents. Some designs will
require operation over the extended
commercial temperature range of
0°C to +100°C junction temperature
(TJ), while systems in industrial
environments will need to operate
with TJ from -40°C to +100°C.

To address these and other
challenges, designers can turn
to FPGA system-on-chip (SoC)
devices that combine low power
consumption, thermal efficiency,
and defense-grade security

for smart, connected, and
deterministic systems.

This article reviews the architecture
of such an FPGA SoC and how
it supports the efficient design
of connected and deterministic
systems. It then briefly presents the
EEMBC CoreMark-Pro processing
power versus power consumption
benchmark, along with a view
of the benchmark performance
of a representative FPGA SoC.
It looks at how security is baked
into these FPGA SoCs and details
exemplary FPGA SoCs from
Microchip Technology, along with a
development platform to accelerate
the design process. It closes with
a brief listing of expansion boards
from MikroElektronika that can
be used to implement a range of

communications interfaces, as
well as global navigation satellite
system (GNSS) location capability.

SoCs built with an FPGA
fabric

The ‘chip’ for this SoC is an FPGA
fabric that contains the system
elements, from the FPGA to the
RISC-V MCU subsystem that’s built
with hardened FPGA logic. The
MCU subsystem includes a quad-
core RISC-V MCU cluster, a RISC-V
monitor core, a system controller,
and a deterministic Level 2 (L2)
memory subsystem. The FPGA in
these SoCs includes up to 460 K
logic elements, up to 12.7 gigabit
per second (Gbps) transceivers,
and other input/output (I/O) blocks,
including general purpose I/O

 Figure 1. All the
elements in this FPGA
SoC, including the
RISC-V subsystems,
are implemented on
the FPGA fabric. Image
source: Microchip
Technology

Field programmable gate
arrays (FPGAs), Linux-capable
RISC-V microcontroller unit
(MCU) subsystems, advanced
memory architectures, and high-
performance communications
interfaces are important tools for
designers. This is particularly true
for designers of secure connected
systems, safety-critical systems,
and a wide range of hard real-time

https://www.digikey.com/en/product-highlight/m/microchip-technology/polarfire-soc-fpgas
https://www.digikey.com/en/supplier-centers/microchip-technology
https://www.digikey.com/en/product-highlight/m/microchip-technology/mpfs-icicle-kit-es--polarfire-soc-fpga-icicle-kit
https://www.digikey.com/en/supplier-centers/mikroelektronika

16 17
we get technical

(GPIO) and Peripheral Component
Interconnect Express (PCIe) 2. The
overall architecture is designed
for reliability. It includes single-
error correction and double-
error detection (SECDED) on all
memories, differential power
analysis (DPA), physical memory
protection, and 128 kilobits (Kbits)
of flash boot memory (Figure 1).

Microchip offers its Mi-V
(pronounced ‘my five’) ecosystem
of third-party tools and design
resources to support the
implementation of RISC-V systems.
It’s built to speed the adoption
of the RISC-V instruction set
architecture (ISA) for hardened
RISC-V cores and for RISC-V
soft cores. Elements of the Mi-V
ecosystem include access to:

	■ Intellectual property (IP) licenses
	■ Hardware
	■ Operating systems and

middleware
	■ Debuggers, compilers, and

design services

The hardened RISC-V MCUs in

workloads include a linear algebra
routine derived from LINPACK, a
fast Fourier transform, a neural net
algorithm for pattern evaluation,
and an improved version of the
Livermore loops benchmark. JPEG
compression, an XML parser, ZIP
compression, and a 256-bit secure
hash algorithm (SHA-256) form the
basis of the integer workloads.

The MPFSO95T models of these
SoC FPGAs, like the MPFS095TL-
FCSG536E, can deliver up to 6,500
Coremarks at 1.3 watts (Figure 3).

Security considerations

The safety-critical and hard
real-time applications for these
FPGA SoCs require strong
security in addition to high
energy efficiency and powerful
processing capabilities. The
basic security functions of these
FPGA SoCs include differential
power analysis (DPA) resistant
bitstream programming, a true
random number generator

(TRNG), and a physically
unclonable function
(PUF). They also include
standard and user-defined
secure boot, physical
memory protection that
provides memory access
restrictions related to
the machine’s privilege
state, including machine,
supervisor, or user modes,

and immunity from Meltdown and
Spectre attacks.

Security begins with secure supply
chain management, including the
use of hardware security modules
(HSMs) during wafer testing and
packaging. The use of a 768-
byte digitally signed x.509 FPGA
certificate embedded in every
FPGA SoC adds to supply chain
assurance.

Numerous on-chip tamper
detectors are included in these
FPGA SoCs to ensure secure and
reliable operation. If tampering is
detected, a tamper flag is issued
that enables the system to respond
as needed. Some of the available
tamper detectors include:

	■ Voltage monitors
	■ Temperature sensors
	■ Clock glitch and clock frequency

detectors
	■ JTAG active detector
	■ Mesh active detector

Security is further ensured with
256-bit advanced encryption
standard (AES-256) symmetric
block cipher correlation power
attack (CPA) countermeasures,
integrated cryptographic digest
capabilities to ensure data integrity,
integrated PUF for key storage,
and zeroization capabilities for
the FPGA fabric and all on-chip
memories.

How to use FPGA SoCs for secure and connected hard real-time systems

Figure 4. The automotive temperature MPFS250T-
1FCSG536T2 comes in a 16 x 16mm package with a
ball count of 536 and a 0.5mm pitch. Image source:
Microchip Technology

Figure 2. The RISC-V subsystem
includes several processor and memory
elements. Image source: Microchip
Technology

Figure 3. The MPFS095T FPGA SoC (orange line) delivers 6500 Coremarks at 1.3
watts. Image source: Microchip Technology

	■ Configure L1 and L2 as
deterministic memory

	■ DDR4 memory subsystem
	■ Disable/enable branch predictors
	■ In-order pipeline operation

More processing with less
energy

In addition to their system
operation benefits, including
support for hard, real-time
processing, these FPGA SoCs are
highly energy efficient. The EEMBC
CoreMark-PRO benchmark is an
industry standard for comparing
the efficiency and performance of
MCUs in embedded systems. It was
designed specifically to benchmark
hardware performance and to
replace the Dhrystone benchmark.

The CoreMark-PRO workloads
include a diversity of performance
characteristics, instruction-level
parallelism, and memory utilization
based on four floating-point
workloads and five common integer
workloads. The floating-point

the FPGA SoC include several
debugging capabilities like passive
run-time configurable advanced
extensible interface (AXI) and
instruction trace. AXI enables
designers to monitor data that’s
being written to or read from
various memories and to know
when it’s being written or read.

The RISC-V MCU subsystem uses
a five-stage single-issue, in-order
pipeline. It’s not vulnerable to
Spectre or Meltdown exploits
that can afflict out-of-order
architectures. All five MCUs
are coherent with the memory
subsystem, supporting a mix of
deterministic asymmetric multi-
processing (AMP) mode real-time
systems and Linux. Capabilities
of the RISC-V subsystem include
(Figure 2):

	■ Run Linux and hard real-time
operations

https://www.digikey.com/en/products/detail/microchip-technology/MPFS095TL-FCSG536E/15219668
https://www.digikey.com/en/products/detail/microchip-technology/MPFS095TL-FCSG536E/15219668

18 19
we get technical

FPGA SoC examples

Microchip Technology combines
these capabilities and technologies
into its PolarFire FPGA SoCs with
multiple speed grades, temperature
ratings, and various package sizes
to support designers’ needs for
a wide range of solutions with
between 25 K and 460 K logic
elements. Four temperature grades
are available (all rated for TJ), 0°C
to +100°C extended commercial
range, -40°C to +100°C industrial
range, -40°C to +125°C automotive
range, and -55°C to +125°C military
range.

Designers can choose from
standard speed grade devices, or
-1 speed grade devices that are
15% faster. These FPGA SoCs can
be operated at 1.0 volt for lowest
power operation, or at 1.05 volts
for higher performance. They are
available in a range of package
sizes, including 11 x 11 millimeters
(mm), 16 x 16 mm, and 19 x 19 mm.

For applications that need extended
commercial temperature operation,
standard speed operation, and 254
K logic elements in a 19 x 19mm
package, designers can use the
MPFS250T-FCVG484EES. For
simpler solutions that need 23

K logic elements, designers can
turn to the MPFS025T-FCVG484E,
also with extended commercial
temperature operation and
standard speed grade in a 19 x
19 mm package. The MPFS250T-
1FCSG536T2 with 254 K logic
elements is designed for high-
performance automotive systems
and has an operating temperature
range of -40 to 125°C and a -1
speed grade for a 15% faster clock,
in a compact 16 x 16mm package
with 536 balls on a 0.5mm pitch
(Figure 4).

FPGA SoC dev platform

To speed the design of systems
with the PolarFire FPGA SoC,
Microchip offers the MPFS-ICICLE-
KIT-ES PolarFire SoC Icicle kit
that enables exploration of the
five-core Linux-capable RISC-V
microprocessor subsystem with
low-power, real-time execution.
The kit includes a free Libero Silver
license that’s needed to evaluate
designs. It supports programming
and debugging features in a single
language.

These FPGA SoCs are supported
with the VectorBlox accelerator
software development kit (SDK)
that enables low-power, small-
form-factor AI/ML applications.
The emphasis is on simplifying
the design process to the point
that designers don’t need to have
prior FPGA design experience.
The VectorBlox accelerator SDK
enables developers to program
power-efficient neural networks
using C/C++. The Icicle kit has
numerous features to provide
a comprehensive development

Figure 5. This comprehensive FPGA SoC development environment includes
connectors for Raspberry Pi (top right) and mikroBUS (lower right side) expansion
boards. Image source: Microchip Technology

environment, including a multi-rail
power sensor system to monitor
the various power domains, PCIe
root port, and on-board memories –
including LPDDR4, QSPI, and eMMC
Flash – to run Linux and Raspberry
Pi, and mikroBUS expansion
ports for a host of wired and
wireless connectivity options, plus
functional extensions like GNSS
location capability (Figure 5).

Expansion boards

A few examples of mikroBUS
expansion boards include:

MIKROE-986, for adding CAN
bus connectivity using a serial
peripheral interface (SPI).

MIKROE-1582, for interfacing
between the MCU and an RS-232
bus.

MIKROE-989, for connecting with
an RS422/485 communication bus.

MIKROE-3144, supports the LTE Cat
M1 and NB1 technologies enabling
reliable and simple connectivity

with 3GPP IoT devices.

MIKROE-2670, enables GNSS
functionality with concurrent
reception of GPS and Galileo
constellations plus either BeiDou or
GLONASS, resulting in high position
accuracy in situations with weak
signals or interference in urban
canyons.

Conclusion

Designers can turn to FPGA SoCs
when developing connected,
safety-critical and hard real-time
deterministic systems. FPGA SoCs
provide a wide range of system
elements, including an FPGA
fabric, RISC-V MCU subsystem
with high-performance memories,
high-speed communications
interfaces, and numerous security
functions. To help designers get
started, development boards and
environments are available that
include all the necessary elements,
including expansion boards that
can be used to implement a wide
range of communications and
location functions.

Recommended reading

1.	 How to Implement Time
Sensitive Networking
to Ensure Deterministic
Communication

2.	 Real-Time Operating
Systems (RTOS) and Their
Applications

How to use FPGA SoCs for secure and connected hard real-time systems

https://www.digikey.com/en/products/detail/microchip-technology/MPFS250T-FCVG484EES/15520492
https://www.digikey.com/en/products/detail/microchip-technology/MPFS025T-FCVG484E/16028828
https://www.digikey.com/en/products/detail/microchip-technology/MPFS250T-1FCSG536T2/16550056
https://www.digikey.com/en/products/detail/microchip-technology/MPFS250T-1FCSG536T2/16550056
https://www.digikey.com/en/products/detail/microchip-technology/MPFS-ICICLE-KIT-ES/12717112
https://www.digikey.com/en/products/detail/microchip-technology/MPFS-ICICLE-KIT-ES/12717112
https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-986/4495688
https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-1582/4976465
https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-989/4495691
https://www.digikey.com/en/products/detail/mikroelektronika/MIKROE-2670/7561235
https://www.digikey.com/en/articles/how-to-implement-time-sensitive-networking-to-ensure-deterministic-communication
https://www.digikey.com/en/articles/how-to-implement-time-sensitive-networking-to-ensure-deterministic-communication
https://www.digikey.com/en/articles/how-to-implement-time-sensitive-networking-to-ensure-deterministic-communication
https://www.digikey.com/en/articles/how-to-implement-time-sensitive-networking-to-ensure-deterministic-communication
https://www.digikey.com/en/articles/real-time-operating-systems-and-their-applications
https://www.digikey.com/en/articles/real-time-operating-systems-and-their-applications
https://www.digikey.com/en/articles/real-time-operating-systems-and-their-applications

20 21
we get technical

Retro Electro: Programming a
calculator to form concepts: the
birth of artificial intelligence	

Written by: David Ray,
Cyber City Circuits

retroelectro

A proposal for The
Dartmouth Summer
Research Project on
artificial intelligence

Since the earliest days of
‘computers’, it has taken thousands
of people to bring ‘artificial
intelligence’ and machine learning
to where it is today.

In the Summer of 1955, Dr. John
McCarthy started a new position
as an assistant professor of
Mathematics at Dartmouth College.
Historians say McCarthy was
the first to use the term ‘Artificial
Intelligence’ in this proposal to the
Rockefeller Foundation. Proposed
and Organized by John McCarthy of
Dartmouth College, Marvin Minsky
of Harvard University, Nathaniel
Rochester of IBM, and Claude E.
Shannon of Bell Labs. The proposal
was for a two-month, ten-man

study on artificial intelligence. The
aim was to gather many of the
nation’s top scientists, engineers,
and mathematicians in the same
room together to focus on what
artificial intelligence could mean
and how they could get there. They
requested $13,500 to complete
this study, but the Rockefeller
Foundation only provided $7500
for a five-week study instead of two
months.

The group of four organizers
were all highly distinguished
researches and inventors. They
were developing the fundamentals
for today’s generative AI, nearly
seventy years ago.

The proposal outlines seven
distinct parts of the problem.

Automatic computers

“If a machine can do a job, then

an automatic calculator can be
programmed to simulate the
machine.”

The idea was simple: if a machine
could do a job, a computer could be

Figure 1. Some attendees
of the Summer Research
Project. Back row, from left
to right, Oliver Selfridge,
Nathaniel Rochester,
Marvin Minsky, and John
McCarthy. In front, Ray
Solomonoff, Peter
Milner, and Claude
Shannon.

The study is to proceed on the basis of the
conjecture that every aspect of learning
or any other feature of intelligence can, in
principle, be so precisely described that a
machine can be made to simulate it.

Figure 2. Personal invitation to
Dartmouth from McCarthy to Ray
Solomonoff.

22 23
we get technical

programmed to replicate that task.
Here, they admit that the speed and
memory sizes of the machines they
had at the time were ‘insufficient’
to simulate higher brain function.
An issue they felt they could tackle
is that there was no programming
language available to do such a
thing in the first place.

How can a computer be
programmed to use a
language

“It may be speculated that a large
part of human thought consists
of manipulating words according
to rules of reasoning and rules of
conjecture... This idea has never
been very precisely formulated nor
have examples been worked out.”

Up to this point, the closest thing
available for programming was
assembly language. Here, the
thought was that since much of
thinking is really made up of words,

grammar, and syntax,
any thinking machine
would likely need to
operate in a similar
way, governed by
whitespace and syntax.

Neuron nets
“How can a set of
(hypothetical) neurons
be arranged so as to
form concepts.”

As scientists began
to grapple with the
challenge of mimicking

human thought, they turned to
the brain’s fundamental building
blocks: neurons. The question was
how to arrange a set of hypothetical
neurons to form concepts. Pioneers
in the field had made strides in both
theoretical and experimental work,
but the problem remained far from
solved.

Theory of the size of a
calculation
“If we are given a well-defined
problem, one way of solving it is to
try all possible answers in order.”

In their quest to solve complex
problems, early computer scientists
realized that brute-force methods
were too time consuming. To
address this, they sought to
understand and measure how
efficient a calculation could be.

Self-improvement
“Probably a truly intelligent
machine will carry out activities

which may best be described as
self-improvement.”

The vision of creating a truly
intelligent machine led to a
fascinating concept: self-
improvement. Researchers
speculated that for a machine to be
intelligent, it would need the ability
to enhance its own capabilities over
time.

Abstraction
“A number of types of ‘abstraction’
can be distinctly defined and
several others less distinctly. A
direct attempt to classify these
and to describe machine methods
of forming abstractions from
sensory and other data would seem
worthwhile.”

Abstraction, the ability to distill
complex information into simpler
concepts, was identified as a
key process in human thought.
To replicate this in machines,
scientists needed to classify
and define different types of
abstraction. This task was seen as
essential for enabling machines
to interpret sensory data and
other information in a human-like
manner.

Randomness and creativity
“A fairly attractive and yet clearly
incomplete conjecture is that
the difference between creative
thinking and unimaginative
competent thinking lies in the
injection of some randomness.”

As researchers delved into the

nature of creativity, they considered
the role of randomness in the
creative process. The intriguing
idea emerged that the difference
between routine and creative
thinking might lie in the controlled
injection of randomness. This
theory suggested that when guided
by intuition, randomness could be
the secret ingredient that makes
creative thinking possible.

Proposal for research by
C. E. Shannon	

Claude Shannon’s master’s thesis,
A Symbolic Analysis of Relay and
Switching Circuits, is credited
with introducing Boolean logic to
electronic circuits and creating the
digital age. After completing his
doctorate at MIT, Shannon worked
at Bell Labs, where he colaborated
with and mentored McCarthy and
Minsky in 1951 and 1952. Together,
they developed ‘Theseus’, a self-
solving ‘mouse in a maze’ using
relay logic.

Shannon’s research proposal for
the Summer Research Project
delved into two key areas related
to information theory and brain
models:

Application of information
theory to computing
machines and brain models
Shannon’s first research focus
addresses the challenge of reliably
transmitting information across
noisy channels using unreliable
components. He explores how
information flows in parallel
data streams over closed-loop
networks and examines the
complications that may arise,
such as propagation delays and
redundancy. Shannon proposes
investigating new approaches to
minimize these delays, ensuring
reliable transmission of information
across complex systems.

The matched environment
and brain model approach to
Automata
In the second topic, Shannon
theorizes that both animal and
human brain development occurs
in stages, beginning with simpler
environments and eventually
moving toward more complex
ones. As someone gets older, the
more their brain can comprehend
the universe around them. He
wanted to explore the specific
stages of brain development and
express them mathematically.
By understanding how brains

adapt to increasingly complex
environments, Shannon hopes
to build models replicating
this adaptability in ‘automata’,
ultimately advancing our
understanding of mechanized
intelligence.

Proposal for research by
M. L. Minsky

As a graduate student, Marvin
Minsky developed the first ‘neural
network’ (The ‘Stochastic Neural
Analog Reinforcement Calculator’
or ‘SNARC’) at Bell Labs in the
early 1950s. A Navy Veteran, he
had degrees from Harvard and
Princeton. He founded MIT’s
Artificial Intelligence Lab and
generally stayed there from its
inception in 1963 until he died in
2016.

Minsky’s proposal focused on
designing a machine capable of
learning through sensory and
‘motor abstractions’. Minsky

“We will concentrate on a problem of devising
a way of programming a calculator to form
concepts and to form generalizations. This, of
course, is subject to change when the group
gets together.”

retroelectro

Figure 2. Claude Shannon with his self-solving
‘mouse-in-a-maze’ machine, Theseus.

Figure 3. Marvin Minsky at Piano’

24 25
we get technical

programmed with a fixed set
of rules to address specific
contingencies and failures, leaving
them without the flexibility to act
intuitively or with common sense.
For example, in your calculator,
if you divide by ‘0’, then you will
likely get an error or some sort, but
this is because the calculator was
programmed to give an error when
asked to divide by ‘0’ instead of it
learning on its own that dividing by
‘0’ doesn’t work and developing its
own rules.

Rochester highlights the frustration
from when machines fail due to
rigid or contradictory rules and
suggests that a more sophisticated
approach is needed to enable
machines to behave intelligently.
Rochester draws on Kenneth
Craik’s model of human thought,
which theorizes that the brain
constructs ‘engines’ that simulate

and predict outcomes in the
environment.

He proposes that machines
could similarly be designed to
form abstractions of sensory
data, define problems, and then
simulate possible solutions,
evaluating their success before
acting. While this approach works
for well-understood problems,
Rochester notes that solving new
or long-unsolved problems requires
randomness and creativity. He
argues that randomness could be
key to overcoming the limitations
of pre-programmed rules and
enabling machines to behave
in original ways, much like how
scientists may rely on a ‘hunch’ to
approach difficult problems.

Rochester discusses the Monte
Carlo method, which involves
conducting hundreds or thousands
of random experiments to
approximate solutions to complex
problems. He sees potential in
applying this method to machine
learning, suggesting that machines
could explore many possibilities
simultaneously and uncover
solutions that traditional methods
might miss.

However, he acknowledges that

simulating human-
like randomness
in machines is
challenging, as
the brain’s control
mechanisms differ
significantly from
those of calculators
and computers.

Proposal for
research by John
McCarthy

John McCarthy, an
army veteran, is famously known
for coining the term ‘Artificial
Intelligence.’ Following his
doctorate at Princeton, he took a
few assistant professor positions
in the area, landing at Dartmouth
College in the summer of 1955. As
a graduate student, he interned
with Marvin Minsky at Bell Labs,
where he was mentored by Claude
Shannon. Following the Summer
Research Project, however, he
took a position at MIT with Marvin
Minsky, continuing work in AI and
developing the LISP programming
language.

McCarthy’s proposal focuses on
studying the relationship between
language and intelligence. It

argues that direct applications
of trial-and-error methods to the
interaction between sensory data
and motor activity are unlikely
to result in complex behaviors.
Instead, he advocates for applying
trial and error at a higher level of
abstraction.

He highlights language as a
crucial tool people use to handle
intricate phenomena, noting that
human minds use language to
formulate conjectures and test
them. McCarthy points out that
English has several advantageous
properties for facilitating complex
thought processes, properties that
programming languages developed
for computers often lack.

These properties include the
ability to use concise arguments
that can be supplemented by
informal mathematics, a way of
incorporating other languages
within English, and the ability
for users to reference their own
problem-solving progress. He also

describes a machine that can
be trained via a ‘trial and error’
process to perform specific
tasks within an environment and
exhibit ‘goal-seeking’ behavior.
This hypothetical machine could
process inputs, generate outputs,
and adapt to success or failure by
reading sensors and such, similar
to Shannon’s Theseus project, for
which Minsky designed the SNARC.
Minsky emphasizes the importance
of pairing sensory and motor
controls for the machine to affect
and learn from its environment
effectively.

Progress in the machine’s learning
would depend on its ability to
relate environmental changes
to corresponding changes in its
sensor readings. Minsky further
explains that the machine should
develop an internal abstract
model of its environment,
stored in memory. This internal
‘abstract’ model would allow
it to first experiment internally
before conducting external
tests, enabling it to perform
tasks more intelligently. The
machine’s behavior would appear
imaginative because it could

predict and anticipate changes in
the environment based on its motor
actions.

Proposal for research by
N. Rochester

Nathaniel Rochester worked at
IBM at the time. He graduated
from MIT in 1941 and then worked
developing RADAR systems for the
US Navy during the war. He started
at IBM in 1948 after the wartime
development dried up. A few years
later, IBM released the first in the
700 series of electronic computers,
the IBM 701, for which Rochester
was the lead developer. At the time
of the proposal, Rochester was the
head of a research group studying
information theory and automatic
pattern recognition. McCarthy
and Rochester first met when IBM
gifted an IBM 704 to MIT’s research
lab, specifically for researching
‘neural networks.’

Rochester’s research proposal
centers on the challenge of creating
a machine capable of exhibiting
originality in its problem-solving
abilities. Typically, machines
like automatic calculators are

“So the mathematician has the machine making
a few thousand random experiments … the
results of these experiments provide a rough
guess as to what the answer may be.”

– Rochester

“Unless the machine is provided with, or is
able to develop, a way of abstracting sensory
material, it can progress through a complicated
environment only through painfully slow steps,
and in general will not reach a high level of
behavior.”

- Minsky

retroelectro

Figure 4. Nathaniel Rochester designed
the first electronic IBM computer.

Figure 5. John McCarthy while working
with chess computers.

26 27
we get technical

References

1.	 A Proposal For the Dartmouth Summer Research Project on Artificial
Intelligence

2.	 Ray Solomonoff’s Personal ‘Dartmouth Archives’
3.	 ‘The Meeting of the Minds That Launched AI’ by Grace Solomonoff
4.	 The Turbulent Past and Uncertain Future of Artificial Intelligence by

Eliza Strickland
5.	 ‘Oral History of Nathaniel Rochester’ Interview by A. Goldstein (June

1991)
6.	 ‘Programs With Common Sense’ by J. McCarthy
7.	 ‘A Symbolic Analysis of Relay and Switching Circuits’ by C.E. Shannon
8.	 ‘Claude E. Shannon: A Retrospective on His Life, Work, and Impact’ by

R.G. Gallager
9.	 ‘Claude Shannon – Father of the Information Age’ from the University of

California
10.	 ‘Mouse With a Memory’ by Bell Labs
11.	 ‘The Pioneers of AI: Marvin Minsky and the SNARC’ by Sahid Parvez
12.	 (Video) Claude Shannon demonstrates “Theseus” Machine Learning @

Bell Labs
13.	 (Video) Marvin Minsky Interview Series (Life Stories of Remarkable

People)

suggests that a fully formalized
version of English would include
rules not just for proofs but also for
guesses and conjectures.

McCarthy contrasts this idea
against the logical languages
of the day, which were mainly
used for creating pre-determined
instruction lists or formalizing parts
of mathematics. He proposes that
an artificial language be developed
to handle conjecture and self-
reference effectively. This language
would mirror English in that short
statements in English would have
equally concise counterparts in the
artificial language.

McCarthy’s eventual goal is to
create a language that would allow
a machine to engage in tasks such
as learning to play games, with the
potential to handle more advanced
problem-solving tasks.

The impact of the Summer
Research Project

The Dartmouth Summer Research
Project on Artificial Intelligence
took place the following summer
and is a milestone moment in
the history of AI. Throughout the
conference eleven people attended.

While there were many ‘projects’
and ‘conferences’ concerning
machine intelligence, this event
marks the largest concerted effort
to achieve Artificial Intelligence at
the time.

While the goal was missed and the
problem turned out harder than
they thought, its results continue
to inform machine learning and

artificial intelligence development
seventy years later.

The writer is thankful to Grace
Solomonoff for her help archiving
so much of the Dartmouth event,
that otherwise would have been
lost to time.

1938
Claude Shannon publishes his thesis ‘A
Symbolic Analysis of Relay and Switching
Circuits,’ introducing Boolean logic to
electronic circuits.

1944
John McCarthy is drafted into the U.S. Army.
Marvin Minsky joins the U.S. Navy to learn
radio and electronics.

1948
Rochester begins work at IBM.

1951
McCarthy and Minsky intern at Bell Labs,
mentored by Claude Shannon. Minsky
develops the first neural network, SNARC.

1955
McCarthy joins Dartmouth College as an
assistant professor. McCarthy submits a
proposal to the Rockefeller Foundation,
coining the term “Artificial Intelligence.”

1958
McCarthy develops the LISP programming
language, which becomes the standard for
AI development.

1965
Moore’s Law is proposed, predicting long-
term exponential growth in computing
power.

1997
IBM’s Deep Blue defeats world chess
champion Garry Kasparov, a landmark
achievement in AI history.

2022
OpenAI releases ChatGPT to the public.

1941
Nathaniel Rochester graduates from MIT.

1946
ENIAC, the first electronic “general
purpose” computer, begins operation,
marking a significant advancement in
digital computing.

1950
Alan Turing publishes Computing
Machinery and Intelligence, proposing the
Turing Test.

1952
IBM releases the IBM 701, designed
by Rochester and Haddad. Shannon
demonstrates ‘Theseus’ at Bell Labs.

1956
The Dartmouth Summer Research Project
on Artificial Intelligence takes place.

1963

1966

2015

MIT’s AI Lab is founded by McCarthy and
Minsky, funded by ARPA, becoming a hub
for AI research.

ELIZA, the first chatbot, is developed by
Joseph Weizenbaum, pioneering early
natural language processing.

OpenAI is founded.

27

retroelectroretroelectro

“(The) main reason the 1956 Dartmouth
workshop did not live up to my expectations is
that AI is harder than we thought.”

- Marvin Minsky

http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf
http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf
https://raysolomonoff.com/dartmouth/
https://spectrum.ieee.org/dartmouth-ai-workshop
https://spectrum.ieee.org/history-of-ai
https://spectrum.ieee.org/history-of-ai
https://ethw.org/Oral-History:Nathaniel_Rochester
https://ethw.org/Oral-History:Nathaniel_Rochester
http://jmc.stanford.edu/articles/mcc59/mcc59.pdf
https://dspace.mit.edu/handle/1721.1/11173
https://mast.queensu.ca/~math474/gallager-on-shannon-it2001.pdf

https://mast.queensu.ca/~math474/gallager-on-shannon-it2001.pdf

https://youtu.be/z2Whj_nL-x8?si=OFa1rXJi-D8_JGBM
https://youtu.be/z2Whj_nL-x8?si=OFa1rXJi-D8_JGBM
https://www.bell-labs.com/claude-shannon/assets/images/automata/pages-from-shannon-bell-labs-reporter-1952-vol-1-1-carousel-01.pdf
https://zahid-parvez.medium.com/history-of-ai-the-first-neural-network-computer-marvin-minsky-231c8bd58409
https://youtu.be/_9_AEVQ_p74?si=89lP490k8ZyRWswo
https://youtu.be/_9_AEVQ_p74?si=89lP490k8ZyRWswo
https://youtu.be/CB2SsvcECzI?si=xl3Mvgr4iWYLKY_Q
https://youtu.be/CB2SsvcECzI?si=xl3Mvgr4iWYLKY_Q

28 29
we get technical

Industry 4.0 relies on intelligent
automation for manufacturing
electronics. Increasingly capable
automation is everywhere, from
the edge to the cloud, in sensors,
robots and cobots, programmable
logic controllers (PLCs), and
other equipment. Semiconductor
wafers, integrated circuits, passive
components, packaging, and
electronic systems for consumer,
green energy, automotive, medical,
industrial, military/aerospace,
and other applications depend
on intelligent automation for their
production. Unified manufacturing
execution systems (MES) provide
real-time monitoring, control,
tracking, and documentation of the
entire manufacturing chain, from
raw materials to finished goods.

The cyber-physical automated
systems in Industry 4.0 extend
beyond traditional manufacturing
activities and rely on various forms
of machine learning (ML) ranging
from deep reinforcement learning
in the Cloud to tinyML on the Edge
for flexible production, continuous
improvement, and consistently
high quality. The number of layers
of connectivity is growing, and the
combination of Edge computing,
the Industrial Internet of Things
(IIoT), and Cloud computing is
increasing the challenges related
to cyber security. Blockchain has
recently entered the picture for
comprehensive and secure supply
chain management.

This article looks at key
automation trends in electronics
manufacturing, including the
increasing layers of connectivity,
the growing need for cybersecurity,
the specialized implementations
of ML being deployed, and how
traceability and MES support
real-time production metrics and
analytics. Along the way, some of
the technologies needed to fully
realize the promise of Industry
4.0 for mass customization with
high quality and low costs are
reviewed, including how DigiKey
supports the needs of automation
system designers with a wide
range of solutions. It closes with
a look at how blockchain is used
to deploy highly secure enterprise-
wide supply chain management
systems.

Increasing layers of
connectivity

The IIoT in Industry 4.0 includes
more wired and wireless network
layers for sensor networks,
autonomous mobile robots
(AMRs), and other systems. For
example, IO-Link was developed to
provide a simplified wired network
connection for the massive number
of sensors, actuators, indicators,
and other previously unconnected
legacy edge devices to higher-level
networks like Ethernet IP, Modbus
TCP/IP, and PROFINET. With IO-
Link, the inputs and outputs (IOs)
of these devices are captured and

How automation, machine
learning, and Blockchain
are driving the future of
electronics manufacturing
Written by: Jeff Shepard

https://www.digikey.com/en/resources/industrial-automation/product-selector
https://www.digikey.com/en/resources/industrial-automation/product-selector

30 31
we get technical

How automation, machine learning, and Blockchain are driving the future of electronics manufacturing

converted to the IO-Link protocol
for serial connectivity defined in IEC
61131-9 with a single 4- or 5-wire
unshielded cable defined in IEC
60974-5-2 (Figure 1). In addition to
providing a new networking layer to
capture more granular information
about factory processes, IO-Link
supports rapid deployment and
remote configuration, monitoring,
and diagnostics of connected
devices to support line and
process changes needed for mass
customization in Industry 4.0
factories.

Wireless IIoT devices, from sensors
to robots, also contribute to the
growing networking layers. Various
wireless protocols, including
Wi-Fi, 5G, LTE, and others, are
used in modern factories. For
example, AMRs use a combination
of onboard sensors and Wi-Fi
connectivity to understand their
environment, identify possible

obstacles and move safely and
efficiently from place to place.
Colaborative robots (cobots) are
designed to work with people to
improve operational efficiency and
often require wireless connectivity.
In some cases, AMRs move cobots
from task to task as needed (Figure
2).

Increasing cyber dangers

The increasing layers in industrial
networks, combined with the
explosion in the number of
connected devices, are resulting
in a growing number of security
threat vectors and increasing cyber
dangers. Several industrial and
IoT-specific security standards
and methodologies have been
developed, including International
Electrotechnical Commission (IEC)
62443 and the Security Evaluation
Standard for IoT Platform (SESIP).

IEC 62443 is a series of standards
developed by the International
Society of Automation (ISA) 99
committee and approved by the

IEC. IEC 62443 is an 800-plus-page
series of standards for Industrial
Automation and Control Systems
(IACS) in 14 subsections and four
tiers (Figure 3). Key sections that
define the product development
and security requirements for
components are:

	■ IEC 62443-4-1: Product
Security Development Lifecycle
Requirements – defines a secure
product development lifecycle
including initial requirements
definition, secure design and
implementation, verification
and validation, defect and patch
management, and end-of-life.

	■ IEC 62443-4-2: Security for
Industrial Automation and
Control Systems: Technical
Security Requirements for
IACS Components – specifies
security capabilities that enable
a component to mitigate threats
for a given security level.

SESIP is published by the

GlobalPlatform and defines a
common structure for evaluating
the security of connected
products and addresses IoT-
specific compliance, security,
privacy, and scalability challenges.
SESIP provides clear definitions
of security functionality on
components and platforms in
the form of Security Functional
Requirements (SFRs). It also
provides strength metrics that
measure robustness against
attacks in the form of SESIP
‘levels’ from 1 to 5, with 1 being
self-certification and 5
corresponding to extensive
testing and third-party
certification.

ML from the Cloud to
the Edge

ML is a key enabler of
intelligent automation,
supporting continuous

process improvements and high-
quality products. The use of neural
networks is a well-established
ML technique in Industry 4.0. It’s
beginning to be supplemented with
deep reinforcement learning in the
Cloud. Deep reinforcement learning
adds a framework of goal-oriented
algorithms to a neural network
core. Initially, reinforcement
learning was confined to repeatable
environments like playing games;
today, algorithms can operate in
more ambiguous environments
in the real world. In the future,
advanced reinforcement learning
implementations may achieve
artificial general intelligence.

ML is not just in the Cloud; it’s
reaching onto the factory floor to
the Edge. The expansion slots in
industrial PCs and programmable
controllers on the factory floor
increasingly host ML and AI
accelerator cards for intelligent
process control.

Tiny machine learning (tinyML)
is optimized for deployment in
low-power applications. The use
of tinyML in sensor applications

 Figure 3. IEC 62443 is a comprehensive set of IACS security standards.
Image source: IEC

Figure 2. An AMR (bottom) can navigate
from place to place using a combination
of onboard sensors and wireless
connectivity and pick up and move a
cubit (top) to a new workstation.
Image source: Omron

Figure 4. Arduino’s Tiny Machine Learning Kit is
designed for developing IIoT sensor applications.
Image source: Digi-Key

 Figure 1. IO-Link can be used
to connect sensors and other
devices using diverse interfaces
to Ethernet, PROFINET, or Modbus
networks. Image source: Banner
Engineering

https://www.digikey.com/en/resources/industrial-automation/sensors-and-switches
https://www.digikey.com/en/products/filter/robotics-robots/993
https://gca.isa.org/blog/structuring-the-isa-iec-62443-standards
https://globalplatform.org/sesip/
https://www.digikey.com/en/products/filter/industrial-pcs/1062
https://www.digikey.com/en/products/filter/controllers-programmable-plc-pac/814
https://www.digikey.com/en/products/filter/controllers-programmable-plc-pac/814
https://www.digikey.com/en/supplier-centers/omron-automation

32 33
we get technical

is growing rapidly. One example
of a tinyML application is IIoT
sensor analytics in Edge devices
powered by batteries or energy
harvesting. Arduino offers a Tiny
Machine Learning Kit that includes
an Arduino Nano 33 BLE Sense
board containing an MCU and a
variety of sensors that can monitor
movement, acceleration, rotation,
sounds, gestures, proximity, color,
light intensity, and movement
(Figure 4). An OV7675 camera
module and an Arduino shield
are also included. The onboard
MCU can implement deep neural
networks based on the TensorFlow
Lite open-source deep learning
framework for on-device inference.

Real-time metrics and
analytics

Real-time metrics and analytics
are essential aspects of intelligent
automation. Traceability 4.0
combines product visibility, supply
chain visibility, and line-item
visibility from previous generations
of traceability and provides a
complete history of all aspects of a
product. In addition, it includes all
machine and process parameters
and supports overall equipment
effectiveness (OEE) metrics that
optimize manufacturing processes
(Figure 5).

Traceability is vital in many

industries, from medical device
manufacturing to automotive and
aerospace. In the case of medical
devices, regulatory requirements
demand extensive tracking and
traceability. Automobiles and
aerospace systems can have tens
of thousands of parts to track. It’s
not just part history; traceability
includes tracking individual part
geometric dimensioning and
tolerancing (GD&T). GD&T enables
precision manufacturing and the
installation of parts based on their
exact GD&T values, supporting
high-precision assemblies for
industries like aerospace and
automotive manufacturing.

Traceability can improve the
accuracy and efficiency of
implementing product recalls.
It enables the manufacturer to
identify all the affected products
and the supplier or suppliers of any
defective components.

Corrective and preventative actions
can be accelerated through the use
of traceability. Like product recalls,
knowing the complete provenance
of products enables manufacturers
to efficiently target and schedule
service and maintenance activities
for products in the field.

Traceability and MES

Unified MES implementations

incorporating traceability can
produce a searchable database
of all the information related to
individual products, including
as-planned designs and as-built
results. For example, traceability
is used to track individual
components and materials as
they arrive, including inbound
quality testing data, location of the
supplying factory, and so on, before
production starts. MES verifies that
information based on the planned
design and feeds into kitting
operations and work in process
databases.

Traceability data supplied by
the IIoT combined with MES
supports the mass customization
of products in Industry 4.0. MES
enables the right materials,
processes, and other resources
to be at the right place to ensure
the lowest production cost and
highest quality result. Also, MES
and traceability can combine and
demonstrate compliance with
government regulations and make
the data readily accessible to
auditors or others as required.

Blockchain

A Blockchain is a decentralized,
or distributed, digital ledger
system for recording transactions
between multiple parties in a
tamperproof and verifiable manner.
Any transactions where trust
is important, like supply chain
management, are potential uses
for blockchain. In a supply chain
with many participants, Blockchain
can improve transaction efficiency
and make transactions verifiable
and tamperproof. Two examples of
the benefits of using Blockchain in
supply chain activities include:

Replacement of manual
processes.
Manual paper-based processes
that rely on signatures or other
forms of physical verification can
potentially be improved using
Blockchain. The limitation is that
the universe of participants in the
ledger must be finite and easily
identifiable. A delivery company
with a constantly changing
database of unfamiliar customers
may not be a good candidate
for Blockchain. A manufacturing
operation with a finite and slowly

Figure 5. Traceability 4.0 is a
comprehensive implementation that
supports the diverse requirements of
Industry 4.0 operations. Image source:
Omron

changing group of trusted suppliers
is a good candidate.

Strengthening traceability.
Blockchain can provide a good
tool for improving supply chain
transparency and meeting
growing regulatory and consumer
information requirements. For
example, the Blockchain can
support the Drug Supply Chain and
Security Act and the unique device
identifier mandate from the U.S.
Food and Drug Administration.
In the automotive and other
industries, suppliers throughout
the supply chain can be involved
in implementation of recalls, and
Blockchain can provide a good tool
for implementing the Traceability
Guideline published by the
Automotive Industry Action Group.

Summary

The intelligent automation that’s
the foundation of Industry 4.0
relies on numerous technologies
for its implementation, including
a growing number of network
layers with wired and wireless
connectivity that result in
increasingly complex cyber security
threats. In addition, machine
learning is being implemented
from the edge to the Cloud to
support real-time metrics and
analytics, including traceability and
unified MES. Finally, Blockchain
technology is being introduced to
support tamperproof and verifiable
databases.

The intelligent automation that’s the foundation
of Industry 4.0 relies on numerous technologies
for its implementation, including a growing
number of network layers with wired and
wireless connectivity that result in increasingly
complex cyber security threats.

How automation, machine learning, and Blockchain are driving the future of electronics manufacturing

https://www.digikey.com/en/supplier-centers/arduino
https://www.digikey.com/en/products/detail/arduino/AKX00028/13982273
https://www.digikey.com/en/products/detail/arduino/AKX00028/13982273

34 35
we get technical

Quickly implement
spoofing-resistant face
recognition without a
Cloud connection
Written by: Stephen Evanczuk

Face recognition has gained
widespread acceptance for
authenticating access to
smartphones but attempts to apply
this technology more broadly have
fallen short in other areas despite
its effectiveness and ease of use.
Along with the technical challenges
of implementing reliable, low-
cost machine learning solutions,
developers must address user
concerns around the reliability
and privacy of conventional face
recognition methods that depend
on cloud connections that are
vulnerable to spoofing.

This article discusses the difficulty
of secure authentication before
introducing a hardware and
software solution from NXP
Semiconductors that addresses
the issues. It then shows how
developers without prior experience
in machine learning methods
can use the solution to rapidly
implement offline anti-spoofing
face recognition in a smart product.

The challenges of secure
authentication for smart
products

In addressing growing concerns
about the security of smart
products, developers have found
themselves left with few tenable
options for reliably authenticating
users looking for quick yet secure
access. Traditional methods rely on
multifactor authentication methods
that rest on some combination
of the classical three factors

of authentication: “Something
you know”, such as a password;
“Something you have”, such as
a physical key or key card; and
“Something you are”, which is
typically a biometric factor such
as a fingerprint or iris. Using this
approach, a strongly authenticated
door lock might require the user to
enter a passcode, use a key card,
and further provide a fingerprint
to unlock the door. In practice,
such stringent requirements
are bothersome or simply
impractical for consumers who
need to frequently and easily re-
authenticate themselves with a
smartphone or other routinely used
device.

The use of face recognition
has significantly simplified
authentication for smartphone
users, but smartphones possess
some advantages that might
not be available in every device.
Besides the significant processing
power available in leading-
edge smartphones, always-on
connectivity is a fundamental
requirement for delivering the
sophisticated range of services
routinely expected by their users.

For many products that require
secure authentication, the
underlying operating platform
will typically provide more
modest computing resources and
more limited connectivity. Face
recognition services from the
leading cloud-service providers
shift the processing load to the
cloud, but the need for robust

connectivity to ensure minimal
response latency might impose
requirements that remain beyond
the capabilities of the platform. Of
equal or more concern to users,
transmitting their image across
public networks for processing and
potentially storing it in the cloud
raises significant privacy issues.

Using NXP Semiconductors’ i.MX
RT106F processors and associated
software, developers can now
implement offline face recognition
that directly addresses these
concerns.

Hardware and software for
spoof-proof offline face
recognition

A member of the NXP i.MX RT1060
Crossover microcontroller (MCU)
family, the NXP i.MX RT106F
series is specifically designed to
support easy integration of offline
face recognition into smart home
devices, consumer appliances,
security devices, and industrial
equipment. Based on an Arm
Cortex-M7 processor core, the
processors run at 528 megahertz
(MHz) for the industrial grade
MIMXRT106FCVL5B, or 600MHz
for commercial grade processors
such as the MIMXRT106FDVL6A
and MIMXRT106FDVL6B.

Besides supporting a wide range
of external memory interfaces,
i.MX RT106F processors include
1 megabyte (Mbyte) of on-chip
random access memory (RAM)
with 512 kilobytes (Kbyte)

https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgTCBcDaIEoBUCMAGAbAMRAXQL5A
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgTCBcDaIEoBUCMAGAbAMRAXQL5A
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcpgnAHLKoDGUBmBDANgZwKYA0IA9lANogAMIAusQA4AuUIAykwE4CWAdgOYgAvsQC0AJmQg0kLgFcipCiCT0QzVsJEhJkSgCUAKmCoA2GrSFA
https://www.digikey.com/en/supplier-centers/arm
https://www.digikey.com/en/products/detail/nxp-usa-inc/MIMXRT106FCVL5B/13557459
https://www.digikey.com/en/products/detail/nxp-usa-inc/MIMXRT106FDVL6A/10815624
https://www.digikey.com/en/products/detail/nxp-usa-inc/MIMXRT106FDVL6B/13557469

36 37
we get technical

Quickly implement spoofing-resistant face recognition without a Cloud connection

Figure 2. The NXP Oasis Lite runtime library includes an Oasis
Lite core that uses MiniCV and an NXP inference engine built
on neural network libraries from NXP and Arm.
Image source: NXP

Figure 3. The NXP SLN-VIZNAS-IOT kit includes a connected module that provides
a robust connected system platform needed to run authentication software. Image
source: NXP

 Figure 4. In the NXP SLN-VIZNAS-IOT kit, the connected module (left) is attached to
the vision application board to provide the hardware foundation for face recognition.
Image source: NXP

Figure 1. NXP Semiconductor’s i.MX RT106F processors combine a full set of
functional blocks needed to support face recognition for consumer, industrial and
security products. Image source: NXP

configured as general purpose
RAM, and 512 Kbytes that can
be configured either as general
purpose RAM or as tightly coupled
memory (TCM) for instructions
(I-TCM) or data (D-TCM). Along with
on-chip power management, these
processors offer an extensive set
of integrated features for graphics,
security, system control, and
both analog and digital interfaces
typically needed to support
consumer devices, industrial
human machine interfaces (HMIs),
and motor control (Figure 1).

Although similar to other i.MX
RT1060 family members, i.MX
RT106F processors bundle in a
runtime license for NXP’s Oasis

Lite face recognition software.
Designed to speed inference on this
class of processors, the Oasis Lite
runtime environment performs face
detection, recognition, and even
limited emotion classification using
neural network
(NN) inference
models running
on an inference
engine and MiniCV
– a stripped-
down version of
the open source
OpenCV computer
vision library. The
inference engine
builds on an NXP
NN library and
the Arm Cortex

Microcontroller System Interface
Standard NN (CMSIS-NN) library
(Figure 2).

The inference models reside on
the i.MX RT106F platform, so face
detection and recognition execute
locally, unlike other solutions
that depend on Cloud-based
resources to run the machine
learning algorithms. Thanks
to this offline face recognition
capability, designers of smart
products can ensure private,
secure authentication despite
low bandwidth or spotty Internet
connectivity. Furthermore,
authentication occurs quickly
with this hardware and software
combination, requiring less than
800 milliseconds (ms) for the
processor to wake from low-
power standby and complete face
recognition.

Used with the i.MX RT106F
processor, the Oasis Lite runtime
simplifies implementation of
offline face recognition for smart
products, but the processor

and runtime environment are of
course only part of a required
system solution. Along with a
more complete set of system
components, an effective
authentication solution requires
imaging capability that can
mitigate a type of security threat
called presentation attacks. These
attacks attempt to spoof face
recognition authentication by
using photographs. For developers
looking to rapidly deploy face-
based authentication in their own
products, the NXP SLN-VIZNAS-IOT
development kit and associated
software provide a ready-to-use
platform for evaluation, prototyping
and development of offline, anti-
spoofing face recognition.

Complete secure systems
solution for face recognition

As with most advanced processors,
the i.MX RT106F processor requires
only a few additional components
to provide an effective computing
platform. The NXP SLN-VIZNAS-
IOT kit completes the design by
integrating the i.MX RT106F with

additional devices to provide
a complete hardware platform
(Figure 3).

The kit’s connected module
board combines an NXP
MIMXRT106FDVL6A i.MX RT106F
processor, an NXP A71CH secure
element, and two connectivity
options – NXP’s MKW41Z512VHT4
Kinetis KW41Z Bluetooth low
energy (BLE) system-on-chip
(SoC) and Murata Electronics’
LBEE5KL1DX-883 Wi-Fi/Bluetooth
module.

To supplement the processor’s
on-chip memory, the connected
module adds Winbond Electronics’
W9825G6JB 256 megabit (Mbit)
synchronous dynamic RAM
(SDRAM), an Integrated Silicon
Solution. Inc. (ISSI) IS26KL256S-
DABLI00 256 Mbit NOR flash, and
ISSI’s IS25LP256D 256 Mbit Quad
Serial Peripheral Interface (SPI)
device.

Finally, the module adds a Torex
Semiconductor XCL214B333DR

https://www.digikey.com/en/products/detail/nxp-usa-inc/SLN-VIZNAS-IOT/13547507
https://www.digikey.com/en/products/filter/embedded-microcontrollers-application-specific/769?s=N4IgTCBcDaIIIHYCMAGJBhAEgFQNIQF0BfIA
https://www.digikey.com/en/products/detail/nxp-usa-inc/MKW41Z512VHT4/6073454
https://www.digikey.com/en/supplier-centers/murata-electronics
https://www.digikey.com/en/products/detail/murata-electronics/LBEE5KL1DX-883/6043959
https://www.digikey.com/en/supplier-centers/winbond-electronics
https://www.digikey.com/en/products/detail/winbond-electronics/W9825G6JB-6/4037471
https://www.digikey.com/en/supplier-centers/integrated-silicon-solution
https://www.digikey.com/en/supplier-centers/integrated-silicon-solution
https://www.digikey.com/en/products/detail/issi-integrated-silicon-solution-inc/IS26KL256S-DABLI00/11568735
https://www.digikey.com/en/products/detail/issi-integrated-silicon-solution-inc/IS26KL256S-DABLI00/11568735
https://www.digikey.com/en/products/filter/memory/774?s=N4IgjCBcoEwAwBYDMVQGMoDMCGAbAzgKYA0IA9lANogJwBsYYMIAuqQA4AuUIAypwCcAlgDsA5iAC%2BpALTNoIDJEEBXEuSogAnKw7dIIKdJDzqASV4wArABkACtbqtJQA
https://www.digikey.com/en/supplier-centers/torex-semiconductor
https://www.digikey.com/en/supplier-centers/torex-semiconductor
https://www.digikey.com/en/products/detail/torex-semiconductor-ltd/XCL214B333DR/4860449

38 39
we get technical

buck converter to supplement the
i.MX RT106F processor’s internal
power management capabilities
for the additional devices on the
connected module board.

The connected module in turn
mounts on a vision application
board that combines a Murata
Electronics IRA-S210ST01 passive
infrared (PIR) sensor, motion
sensor, battery charger, audio
support, light emitting diodes
(LEDs), buttons, and interface
connectors (Figure 4).

 Figure 4. In the NXP SLN-VIZNAS-
IOT kit, the connected module (left)
is attached to the vision application
board to provide the hardware
foundation for face recognition.
(Image source: NXP)

Along with this system platform,
a face recognition system design
clearly requires a suitable camera
sensor to capture an image of
the user’s face. As mentioned
earlier, however, concerns about
presentation attacks require
additional imaging capabilities.

Mitigating presentation
attacks

Researchers have for years
explored different presentation
attack detection (PAD) methods
designed to mitigate attempts
such as using latent fingerprints
or images of a face to spoof
biometric-based authentication
systems. Although the details
are well beyond the scope of
this article, PAD methods in
general use deep analysis of the
quality and characteristics of the
biometric data captured as part of
the process, as well as ‘liveness’
detection methods designed to
determine if the biometric data
was captured from a live person.
Underlying many of these different
methods, deep neural network
(DNN) models play an important
role not only in face recognition,
but also in identifying attempts to
spoof the system. Nevertheless, the
imaging system used to capture the
user’s face can provide additional
liveness detection support.

For the SLN-VIZNAS-IOT kit,
NXP includes camera modules
that contain a pair of ON

Semiconductor’s MT9M114 image
sensors. Here, one camera is
equipped with a red, green, blue
(RGB) filter, and the other camera
is fitted with an infrared (IR)
filter. Attached through camera
interfaces to the vision application
board, the RGB camera generates
a normal visible light image,
while the IR camera captures an
image that would be different
for a live person compared to an
image of the person. Using this
liveness detection approach along
with its internal face recognition
capability, the SLN-VIZNAS-IOT
kit provides offline, anti-spoofing
face recognition capability in a
package measuring about 30 x 40
millimeters (mm) (Figure 5).

Getting started with the
SLN-VIZNAS-IOT kit

The NXP SLN-VIZNAS-IOT kit
comes ready-to-use with built-
in face recognition models.
Developers plug in a USB cable and
touch a button on the kit to perform
a simple manual face registration
using the preloaded ‘elock’
application and the accompanying
mobile app (Figure 6, left). After
registration, the mobile app will
display a ‘welcome home’ message
and ‘unlocked’ label when the kit
authenticates the registered face
(Figure 6, right).

The kit’s Oasis Lite face recognition
software processes models from
its database of up to 3000 RGB
faces with a recognition accuracy

of 99.6%, and up to 100 IR faces
with an anti-spoofing accuracy of
96.5%. As noted earlier, the NXP
hardware/software solution needs
less than one second (s) to perform
face detection, image alignment,
quality check, liveness detection,
and recognition over a range from
0.2 to 1.0 meters (m). In fact, the
system supports an alternate
‘light’ inference model capable of
performing this same sequence
in less than 0.5 s but supports a
smaller maximum database size of
1000 RGB faces and 50 IR faces.

Building custom face
recognition applications

Used as is, the NXP SLN-VIZNAS-
IOT kit lets developers quickly
evaluate, prototype and develop
face recognition applications.
When creating custom hardware
solutions, the kit serves as a
complete reference design with
full schematics and a detailed bill
of materials (BOM). For software
development, programmers
can use the NXP MCUXpresso
integrated development
environment (IDE) with FreeRTOS

support and configuration tools. For
this application, developers simply
use NXP’s online MCUXpresso SDK
Builder to configure their software
development environment with
NXP’s VIZNAS SDK, which includes
the NXP Oasis Lite machine
learning vision engine (Figure 7).

The software package includes
complete source code for the
operating environment as well
as the elock sample application
mentioned earlier. NXP does
not provide source code for its
proprietary Oasis Lite engine or for
the models. Instead, developers

work with the Oasis Lite runtime
library using the provided
application programming interface
(API), which includes a set of
intuitive function calls to perform
supported operations. In addition,
developers use a provided set of C
defines and structures to specify
various parameters including image
size, memory allocation, callbacks
and enabled functions used by the
system when starting up the Oasis
Lite runtime environment (Listing
1).

The elock sample application
code demonstrates the key design
patterns for launching Oasis as
a task running under FreeRTOS,
initializing the environment and
entering its normal run stage. In the
run stage, the runtime environment
operates on each frame of an
image, executing the provided
callback functions associated
with each event defined in the
environment (Listing 2).

Figure 6. The NXP SLN-VIZNAS-IOT hardware kit works out of the box, utilizing a
companion app to register a face (left) and recognize registered faces (right).
Image source: NXP

 Figure 7. NXP provides a comprehensive software environment that executes the
NXP Oasis Lite runtime library and utility middleware on the FreeRTOS operating
system. Image source: NXP

Quickly implement spoofing-resistant face recognition without a Cloud connection

 Figure 5. The NXP SLN-VIZNAS-
IOT hardware kit integrates a
dual camera system for liveness
detection (top) and a vision
application board (bottom) with
a connected module to provide
a drop-in solution for offline face
recognition with anti-spoofing
capability. Image source: NXP

https://www.digikey.com/en/products/detail/murata-electronics/IRA-S210ST01/5012561
https://www.digikey.com/en/supplier-centers/onsemi
https://www.digikey.com/en/supplier-centers/onsemi
https://www.digikey.com/en/products/detail/on-semiconductor/MT9M114EBLSTCZ-CR1/7221156
https://mcuxpresso.nxp.com/
https://mcuxpresso.nxp.com/

40 41
we get technical

The sample application can
provide developers with step by
step debug messages describing
the results associated with each
event processed by the event
handler (EvtHandler). For example,
after the quality check completes
(OASISLT_EVT_QUALITY_CHK_
COMPLETE), the system prints out
debug messages describing the
result, and after face recognition
completes (OASISLT_EVT_REC_
COMPLETE), the system pulls the

Listing 1. Developers can modify software execution
parameters by modifying the contents of structures such as
the one shown here for Oasis Lite runtime initialization.
Code source: NXP

Listing 2. The Oasis Lite runtime recognizes a series of events
documented as an enumerated set in the Oasis Lite runtime
header file. Code source: NXP

typedef struct {

 //max input image height, width and channel, min_
face: minimum face can be detected

 int height;

 int width;

 //only valid for RGB images; for IR image, always
GREY888 format

 OASISLTImageFormat_t img_format;

 OASISLTImageType_t img_type;

 //min_face should not smaller than 40

 int min_face;

 /*memory pool pointer, this memory pool should only
be used by OASIS LIB*/

 char* mem_pool;

 /*memory pool size*/

 int size;

 /*output parameter,indicate authenticated or not*/

 int auth;

typedef enum {

 /*indicate the start of face detection, user can
update frame data if it is needed.

 * all parameter in callback parameter is invalid.*/

 OASISLT_EVT_DET_START,

 /*The end of face detection.

 *if a face is found, pfaceBox(OASISLTCbPara_t)
indicated the rect(left,top,right,bottom point value)

 *info and landmark value of the face.

 *if no face is found,pfaceBox is NULL, following
event will not be triggered for current frame.

 *other parameter in callback parameter is invalid */

 OASISLT_EVT_DET_COMPLETE,

 /*Face quality check is done before face
recognition*/

 OASISLT_EVT_QUALITY_CHK_START,

 OASISLT_EVT_QUALITY_CHK_COMPLETE,

 /*Start of face recognition*/

 OASISLT_EVT_REC_START,

 /*The end of face recognition.

 * when face feature in current frame is gotten,
GetRegisteredFaces callback will be called to get all

 * faces feature registered and OASIS lib will try to
search this face in registered faces, if this face

 * is matched, a valid face ID will be set in
callback parameter faceID and corresponding
simularity(indicate

 * how confidence for the match) also will be set.

 * if no face match, a invalid(INVALID_FACE_ID) will
be set.*/

 OASISLT_EVT_REC_COMPLETE,

 /*callback functions provided by caller*/

 InfCallbacks_t cbs;

 /*what functions should be enabled in OASIS LIB*/

 uint8_t enable_flags;

 /*only valid when OASIS_ENABLE_EMO is activated*/

 OASISLTEmoMode_t emo_mode;

 /*false accept rate*/

 OASISLTFar_t false_accept_rate;

 /*model class */

 OASISLTModelClass_t mod_class;

} OASISLTInitPara_t;

user id and name from its database
for recognized faces and prints out
that information (Listing 3).

Besides supporting face
recognition processing
requirements, the NXP SLN-
VIZNAS-IOT software is
designed to protect the operating
environment. To ensure runtime
security, the system is designed to
verify the integrity and authenticity
of each signed image loaded into
the system using a certificate

stored in the SLN-VIZNAS-IOT
kit’s filesystem. As this verification
sequence starts with a trusted
bootloader stored in read-only
memory (ROM), this process
provides a chain of trust for running
application firmware. Also, because
code signing and verification can
slow development, this verification
process is designed to be bypassed
during software design and
debug. In fact, the SLN-VIZNAS-
IOT kit comes preloaded with
signed images, but code signature
verification is bypassed by default.
Developers can easily set options
to enable full code signature

 /*start of emotion recognition*/

 OASISLT_EVT_EMO_REC_START,

 /*End of emotion recognition, emoID indicate which
emotion current face is.*/

 OASISLT_EVT_EMO_REC_COMPLETE,

 /*if user set a registration flag in a call of OASISLT_
run and a face is detected, this two events will be
notified

 * for auto registration mode, only new face(not
recognized) is added(call AddNewFace callback
function)

 * for manu registration mode, face will be added
forcely.

 * for both cases, face ID of new added face will be
set in callback function */

 OASISLT_EVT_REG_START,

 /*when registration start, for each valid frame is
handled,this event will be triggered and indicate

 * registration process is going forward a little.

 * */

 OASISLT_EVT_REG_IN_PROGRESS,

 OASISLT_EVT_REG_COMPLETE,

 OASISLT_EVT_NUM

} OASISLTEvt_t;

Quickly implement spoofing-resistant face recognition without a Cloud connection

42 43
we get technical

verification for production.

Along with the runtime environment and associated
sample application code, NXP provides Android mobile
apps with full java source code. One app, the VIZNAS
FaceRec Manager, provides a simple interface for
registering faces and managing users. Another app,
the VIZNAS Companion app, allows users to provision
the kit with Wi-Fi credentials using an existing Wi-Fi or
BLE connection.

Conclusion

Face recognition offers an effective approach
for authenticating access to smart products, but
implementing it has typically required local high-
performance computing or always-on high-bandwidth
connectivity for rapid responses. It has also been a
target of spoofing and is subject to concerns about
user privacy.

As shown, a specialized processor and software
library from NXP Semiconductors offer an alternative
approach that can accurately perform offline face
recognition in less than a second without a Cloud
connection, while mitigating spoofing attempts.

static void EvtHandler(ImageFrame_t *frames[],
OASISLTEvt_t evt, OASISLTCbPara_t *para, void *user_
data)

{

[code redacted for simplification]

 case OASISLT_EVT_QUALITY_CHK_COMPLETE:

 {

 UsbShell_Printf(“[OASIS]:quality chk res:%d\
r\n”, para->qualityResult);

 pQMsg->msg.info.irLive = para->reserved[5];

 pQMsg->msg.info.front = para->reserved[1];

 pQMsg->msg.info.blur = para->reserved[3];

 pQMsg->msg.info.rgbLive = para->reserved[8];

 if (para->qualityResult == OASIS_QUALITY_
RESULT_FACE_OK_WITHOUT_GLASSES ||

 para->qualityResult == OASIS_QUALITY_
RESULT_FACE_OK_WITH_GLASSES)

 {

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[EVT]:ok!\r\n”);

 }

 else if (OASIS_QUALITY_RESULT_FACE_SIDE_
FACE == para->qualityResult)

 {

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[EVT]:side face!\r\n”);

 }

 else if (para->qualityResult == OASIS_QUALITY_
RESULT_FACE_TOO_SMALL)

 {

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[EVT]:Small Face!\r\n”);

 }

 else if (para->qualityResult == OASIS_QUALITY_
RESULT_FACE_BLUR)

 {

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[EVT]: Blurry Face!\r\n”);

 }

 else if (para->qualityResult == OASIS_QUALITY_
RESULT_FAIL_LIVENESS_IR)

 {

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[EVT]: IR Fake Face!\r\n”);

 }

 else if (para->qualityResult == OASIS_QUALITY_
RESULT_FAIL_LIVENESS_RGB)

 {

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[EVT]: RGB Fake Face!\r\n”);

 }

 }

 break;

[code redacted for simplification]

 case OASISLT_EVT_REC_COMPLETE:

 {

 int diff;

 unsigned id = para->faceID;

 OASISLTRecognizeRes_t recResult = para-
>recResult;

 timeState->rec_comp = Time_Now();

 pQMsg->msg.info.rt = timeState->rec_start -
timeState->rec_comp;

 face_info.rt = pQMsg->msg.info.rt;

#ifdef SHOW_FPS

 /*pit timer unit is us*/

 timeState->rec_fps++;

 diff = abs(timeState->rec_fps_start - timeState-
>rec_comp);

 if (diff > 1000000 / PIT_TIMER_UNIT)

 {

 // update fps

 pQMsg->msg.info.recognize_fps = timeState-
>rec_fps * 1000.0f / diff;

 timeState->rec_fps = 0;

 timeState->rec_fps_start = timeState-
>rec_comp;

 }

#endif

 memset(pQMsg->msg.info.name, 0x0,
sizeof(pQMsg->msg.info.name));

 if (recResult == OASIS_REC_RESULT_KNOWN_
FACE)

 {

 std::string name;

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[OASIS]:face id:%d\r\n”, id);

 DB_GetName(id, name);

 memcpy(pQMsg->msg.info.name, name.c_
str(), name.size());

 face_info.recognize = true;

 face_info.name = std::string(name);

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[OASIS]:face id:%d name:%s\r\n”, id, pQMsg->msg.
info.name);

 }

 else

 {

 // face is not recognized, do nothing

 UsbShell_DbgPrintf(VERBOSE_MODE_L2,
“[OASIS]:face unrecognized\r\n”);

 face_info.recognize = false;

 }

 VIZN_RecognizeEvent(gApiHandle, face_info);

 }

 break;

Listing 3. As shown in this snippet from a sample application
in the NXP software distribution, an event handler processes
events encountered during the face recognition sequence.
Code source: NXP

Quickly implement spoofing-resistant face recognition without a Cloud connection

44 45
we get technical

Written by: Adam Taylor

Why and how to use Efinix
FPGAs for AI/ML imaging –
Part 1: getting started

Editor’s Note: New approaches
to FPGA architectures bring
finer-grained control and greater
flexibility to address the needs
of machine learning (ML) and
artificial intelligence (AI). Part 1
of this two-part series introduces
one such architecture from Efinix
and how to get started with it
using a development board.
Part 2 discusses interfacing the
development board to external
devices and peripherals, such as a
camera.

FPGAs play a critical role in many
applications, from industrial control
and safety to robotics, aerospace,
and automotive. Thanks to the
flexible nature of the programmable
logic core and their wide interfacing
capabilities, one growing use
case for FPGAs is in image
processing when ML inference is
to be deployed. FPGAs are ideal
for implementing solutions that
have several high-speed camera
interfaces. In addition, FPGAs
also enable the implementation
of dedicated processing pipelines
in the logic, thereby removing

bottlenecks that would be
associated with CPU or GPU-based
solutions.

For many developers, however,
their applications require more ML/
AI functionality and finer-grained
control or routing and logic, beyond
what classic FPGA architectures
with combinatorial logic blocks
(CLBs) can provide. Newer
approaches to FPGA architectures
address these issues. For example,
Efinix’s Quantum architecture uses
an eXchangeable Logic and Routing
(XLR) block.

This article discusses key features
and attributes of the Efinix FPGA
architecture, emphasizing its AI/
ML capabilities and introducing
real-world implementations. It
then discusses a development
board and associated tools that
developers can use to quickly get
started on their next AI/ML imaging
design.

Efinix FPGA devices

Efinix currently offers two device
ranges. It initially introduced
the Trion family, which offers
logic densities from 4000 (4K)
to 120K logic elements (LEs),
and is fabricated using an SMIC
40LL process. The newest line
of devices, the Titanium family,
offers logic densities from 35K to
1 million (1M) logic elements, and
is fabricated on the very popular

TSMC 16 nanometer (nm) node.

Both offerings are based around
the Quantum architecture, which
is unique in the FPGA world.
The standard FPGA architecture
is based on CLBs which, at the
simplest level, contain a look-up
table (LUT) and flip-flops. The CLBs
implement logic equations that are
then interconnected via routing.
Efinix’s Quantum architecture
moves away from distinct logic and
routing blocks with the XLR block.

What makes an XLR block unique
is that it can be configured to
function as a logic cell with an LUT,
a register and adder, or a routing
matrix. This approach offers a
finer-grained architecture that
provides routing flexibility, enabling
implementations that are logic
heavy or routing heavy to achieve
the desired performance.

Figure 2. The Titanium
FPGA Ti180 comes in
a variety of options
depending on the bus
width, I/O, and memory
requirements. Image
source: Efinix

Figure 1. What makes an XLR block unique is that it can be
configured to function as either a logic cell with an LUT, a
register and adder, or a routing matrix. Image source: Efinix

https://www.digikey.com/en/supplier-centers/efinix
https://www.digikey.com/en/articles/why-and-how-to-use-efinix-fpgas-for-ai-ml-imaging-part-2-image-capture-and-processing
https://www.digikey.com/en/products/filter/fpgas-field-programmable-gate-array/696?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL74wCsiIKkAZgIYA2AznoSSAQ1aggQBV0ASwIA7KtSA
https://www.digikey.com/en/products/filter/fpgas-field-programmable-gate-array/696?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL7X4KSkCiAZgJYB2bAHgAQAqbVAEMumALZVqQA

46 47
we get technical

Why and how to use Efinix FPGAs for AI/ML imaging – Part 1: getting started

As the newest family, the Titanium
devices offer the most advanced
features for the developer (Figure
2). Along with the XLR core, they
provide multi-gigabit serial links
which operate at either 16 gigabits
per second (Gbps) or 25.8 Gbps,
depending on the device selected.
These multi-gigabit links are crucial
for enabling high-speed data
transfer on and off the chip.

Titanium devices also provide a
wide range of input/output (I/O)
interfacing capabilities that can be
grouped as general purpose I/O
(GPIO), and that can support single-
ended I/O standards such as low-
voltage CMOS (LVCMOS) at 3.3, 2.5,
and 1.8 volts.

For high-speed and differential
interfacing, the Titanium devices
provide high-speed I/O (HSIO)
which supports single-ended
I/O standards such as LVCMOS
at 1.2, 1.5 volts, and SSTL and
HSTL. Differential I/O standards
supported by HSIO include low-
voltage differential signalling
(LVDS), differential SSTL, and
HSTL.

Modern FPGAs also require
closely coupled, high-bandwidth
memory, which is used to store
image frames for image processing
applications, sample data for signal
processing, and of course, to run
operating systems and software
for processors implemented within
the FPGA. The Titanium range
of devices provides the ability to
interface with dynamic data rate
four (DDR4) and low-power DDR4(x)
(LPDDR4(x)). Depending on the
exact Titanium device selected, the
bus width support is x32 (J) or x16
(M), while some devices have no
LPDDR4 support (L).

Titanium FPGAs are SRAM based
and require a configuration
memory, with the device
configuration performed by either
master/slave Serial Peripheral
Interconnect (SPI) or JTAG. To
ensure this configuration method
is secure, the Titanium FPGA
uses AES GCM encryption of the
bitstream, along with AES GCM
and RSA-4096 to provide bitstream
authentication. Strong security
like this is required since FPGAs

Figure 4. The Ti180 M484 development
kit is shown with its versatile range of
expansion options based on QSE and
FMC connectors. Image source: Adam
Taylor

Figure 5. Within Efinity, new projects are created targeting
the selected device. Image source: Adam Taylor

are deployed at the edge where
malicious actors could access and
manipulate their behavior.

Development board
introduction

Development boards form a critical
element of the FPGA evaluation
process since they can be used to
explore the capabilities of a device
and prototype applications, thereby
helping to reduce overall risk. The
first development board available to
evaluate Titanium FPGAs and begin
prototyping applications is the
Ti180 M484 (Figure 3). The board
features an FPGA Mezzanine Card
(FMC) connector and four Samtec
QSE connectors.

The Ti180 FPGA fitted to this
development board provides
172K XLR cells, 32 global clocks,
640 digital signal processing
(DSP) elements, and 13 megabits
(Mbits) of embedded RAM. The
DSP elements provide the ability
to implement fixed point 18 x
19 multiplications and 48-bit
multiplications. This DSP can also
be optimized for single instruction,
multiple data (SIMD) operations
running in either a dual or quad
configuration. DSP elements can
also be configured to perform
floating point operations.

Like most development boards, the
Ti180 development board provides
simple LEDs and buttons. Its
real power, however, comes in its
interfacing capabilities. The Ti180
development board provides a
low-pin-count FMC connector that
enables a wide range of peripherals
to be connected. As it’s a widely
used standard, there are many
FMC cards that enable interfacing
of high-speed analog-to-digital
converter (ADC), digital-to-analog
converter (DAC), networking, and
memory/storage solutions.

In addition to the FMC connection,
the board provides four Samtec
QSE connectors which enable the
developer to add expansion cards.
These QSE connectors are used to
provide MIPI inputs and outputs,
with each QSE connector providing
either a MIPI input or output.

The Ti180 board also provides 256
Mbits of LPDDR4 to support the
high-performance memory required
in image or signal processing

applications. In addition, the
development board provides a
range of clocking options at 25,
33.33, 50, and 74.25 megahertz
(MHz), which can be used with
the device phase lock loop (PLL)
to generate different internal
frequencies.

The ability to reprogram and
debug live on the board during
development is critical and requires
a JTAG connection, which is
provided on-board via a USB-C
interface. Also provided is non-
volatile memory in the form of two,
256-Mbit NOR flash devices that
can be used to demonstrate the
configuration solution.

The board is powered from a 12-
volt universal power adaptor that is
included in the box. Also included
is an FMC-to-QSE break out, along
with QSE-based expansion cards
for HDMI, Ethernet, MIPI, and LVDS.

Figure 3. Along with a Titanium FPGA, the
Ti180 M484 development kit features an FMC
connector and four Samtec QSE connectors.
Image source: Adam Taylor

https://www.digikey.com/en/products/detail/efinix-inc/TI180M484-DK/16731861
https://www.digikey.com/en/supplier-centers/samtec
https://www.digikey.com/en/products/filter/rectangular-connectors/arrays-edge-type-mezzanine-board-to-board/308?s=N4IgTCBcDaIIoGUCiIC6BfIA
https://www.digikey.com/en/products/detail/analog-devices-inc/ad9467-fmc-250ebz/3232934
https://www.digikey.com/en/products/detail/analog-devices-inc/ad9467-fmc-250ebz/3232934
https://www.digikey.com/en/products/detail/texas-instruments/DAC3484EVM/2627663
https://www.digikey.com/en/products/detail/texas-instruments/DAC3484EVM/2627663
https://www.digikey.com/en/products/detail/efinix-inc/efx-fmc-ddr3-gpio/17084465

48 49
we get technical

To demonstrate the Ti180 image
processing capabilities, a dual RPI
daughter card and two IMX477
camera cards are also provided.

The software environment

Implementing designs targeting the
Ti180 development board use the
Efinix software Efinity. The software
enables the generation of a bit
stream via synthesis and place and
route. It also provides developers
with intellectual property (IP)
blocks, timing analysis, and on-chip
debugging.

Note that a development board
is required to gain access to the

Efinity software. Unlike other
vendors, though, the tool does not
have different versions that require
additional licensing.

Within Efinity, new projects are
created targeting the selected
device. RTL files can then be added
to the project, and constraints
created for timing and I/O design.
It’s within Efinity that developers
are also able to implement the I/O
design, utilizing the HSIO, GPIO, and
specialized I/O.

A critical element of FPGA
design is leveraging IP, especially
for complex IP such as AXI
interconnects, memory controllers,
and softcore processors. Efinity

provides developers with a range
of IP blocks that can be used to
accelerate the design process.

While FPGAs are excellent at
implementing parallel processing
structures, many FPGA designs
include softcore processors. These
provide the ability to implement
sequential processing, such as
network communications. To
enable the deployment of the
softcore processors in the Efinix
devices, Efinity provides the
Sapphire system-on-chip (SoC)
configuration tool. Sapphire allows
the developer to define a multi-
processor system that has both
caches and cache coherency
across multiple processors, along
with the ability to run an embedded
Linux operating system. Within
Sapphire, the developer can choose
between one and four softcore
processors.

The softcore processor being
implemented is the VexRiscV
soft CPU, which is based on the
RISC-V instruction set architecture.
The VexRiscV processor is a
32-bit implementation which has
extensions for pipelining and
offers a configurable feature set,
making it ideal for implementation
in Efinix devices. Optional
configurations include a multiplier,
atomic instructions, floating point
extensions, and compressed
instructions. Depending on the
configuration of the SoC system,
performance will range between
0.86 and 1.05 DMIPS/MHz.

Figure 6. Efinity
provides developers
with an IP catalog
that they can use to
accelerate the design
process. Image source:
Adam Taylor

Once the hardware environment
has been designed and
implemented in the Efinix device,
the application software can
be developed using the Ashling
RiscFree IDE. Ashling RiscFree is
an Eclipse-based IDE that enables
the creation and compilation of
application software, along with
debug on the target to fine-tune the
application prior to deployment.

If an embedded Linux solution is
being developed, all necessary boot
artifacts are provided, including
First Stage Boot Loader, OpenSBI,
U-Boot, and Linux using Buildroot.
Alternatively, the developer can use
FreeRTOS if a real-time solution is
required.

AI implementation

Building upon the RISC-V
softcore operation is Efinix’s AI

implementation. This leverages
the custom instruction capability
of the RISC-V processor to enable
the acceleration of TensorFlow Lite
solutions. The use of the RISC-V
processor also enables users to
create custom instructions that
can be used as part of the pre-
processing or post-processing
following the AI inference,
creating a more responsive and
deterministic solution.

To get started on an AI
implementation, the first step is
to explore the Efinix model zoo,
which is a library of AI/ML models
optimized for its end technology.
For developers working with the
Efinix devices, the model zoo can
be accessed, and the network
trained using Jupyter Notebooks
or Google Colab. Once the
network has been trained, it can
be converted from a floating point
model to a quantized one using the

TensorFlow Lite convertor.

Once in the TensorFlow Lite format,
Efinix’s tinyML accelerator can
be used to create a deployable
solution on the RISC-V solution.
The tinyML generator enables
the developer to customize the
accelerator implementation and
generate the project files. When
deployed in this manner, the
acceleration can range between
4x and 200x depending upon
the selected architecture and
customization.

Conclusion

Efinix devices provide developers
with flexibility thanks to their unique
XLR architecture. The toolchain
provides the ability to not only
implement RTL design, but also
implement complex SoC solutions
that deploy softcore RISC-V
processors. Building on top of the
softcore SoC is an AI/ML solution
that enables the deployment of ML
inference.

Why and how to use Efinix FPGAs for AI/ML imaging – Part 1: getting started

Figure 7. Ashling RiscFree is an Eclipse-
based IDE that enables the creation and
compilation of application software,
along with debug on the target.
Image source: Adam Taylor

50 51
we get technical

Written by:
Bill Schweber,
Contributing Author at DigiKey

Editor’s Note: New approaches
to FPGA architectures bring
finer-grained control and greater
flexibility to address the needs
of machine learning (ML) and
artificial intelligence (AI). Part 1
of this two-part series introduces
one such architecture from Efinix
and how to get started with it
using a development board. Here,
Part 2 discusses interfacing the
development board to external
devices and peripherals such as a
camera, and how to leverage the
FPGA to remove image processing
bottlenecks.

FPGAs play a critical role in many
applications, from industrial control
and safety to robotics, aerospace,
and automotive. Thanks to the
flexible nature of the programmable
logic core and their wide interfacing
capabilities, one growing use case
for FPGAs is in image processing,
where machine learning (ML) can
be deployed. FPGAs are ideal
for implementing solutions that
have several high-speed camera
interfaces thanks to their parallel
logic structure. In addition,
FPGAs also enable the use of a
dedicated processing pipeline in
the logic, thereby removing shared-

Why and how to use Efinix
FPGAs for AI/ML imaging –
Part 2: Image capture and
processing
Written by: Adam Taylor

resource bottlenecks that would be
associated with CPU or GPU-based
solutions.

This second look at Efinix’s
Titanium FPGAs will examine
the reference image processing
application that comes with the
FPGA’s Ti180 M484 development
board. The aim is to understand the
constituent parts of the design, and
to identify where FPGA technology
enables the removal of bottlenecks
or enables other benefits to
developers.

 Figure 1. Conceptually, the Ti180 M484
reference design receives images from
several MIPI cameras, performs frame
buffering in the LPDDR4x, and then
outputs the images to an HDMI display.
Image source: Efinix

https://www.digikey.com/en/articles/efinix-fpgas-for-ai-ml-imaging-part-1-getting-started
https://www.digikey.com/en/supplier-centers/efinix
https://www.digikey.com/en/products/filter/fpgas-field-programmable-gate-array/696?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL7X4KSmoCWqAhgHbOYC2V1QA
https://www.digikey.com/en/products/detail/efinix-inc/TI180M484-DK/16731861

52 53
we get technical

MIPI D-PHY within the FPGA I/O
reduces the complexity of the
circuit card design while also
reducing the bill of materials
(BOM).

With the image stream from the
camera received, the reference
design then converts the output of
the MIPI CSI-2 RX into an Advanced
eXtensible Interface (AXI) Stream.
An AXI Stream is a unidirectional
high-speed interface that provides
a stream of data from a master
to a slave. Handshaking signals
to transfer between a master
and slave are provided (tvalid
and tready) along with sideband
signals. These sideband signals
can be used to convey image timing
information such as start of frame
and end of line.

AXI Stream is ideal for image
processing applications and
enables Efinix to provide a range
of image processing IP which can
then be easily integrated into the
processing chain as required by the
application.

After being received, the MIPI CSI-2
image data and timing signals are

converted into an AXI Stream and
input into a direct memory access
(DMA) module, which writes the
image frame to the LPDDR4x and
acts as the frame buffer.

This DMA module is operating
under the control of the RISC-V
core in the FPGA within a Sapphire
system on chip (SoC). This SoC
provides control, such as stopping
and starting DMA writes, in addition
to providing the DMA write channel
with the necessary information
to correctly write the image data
to the LPDDR4x. This includes
information on the memory
location and the width and height of
the image defined in bytes.

The output channel in the reference
design reads the image information
from the LPDDR4x frame buffer
under the control of the RISC-V
SoC. The data is output from the
DMA IP as an AXI Stream, which is
then converted from RAW format
provided by the sensor to RGB
format (Figure 2), and prepared
for output over the on-board
Analog Devices’ ADV7511 HDMI
transmitter.

The use of the DMA also enables
the Sapphire SoC RISC-V to access
the images stored within the frame
buffer, and the abstract statistics
and image information. The
Sapphire SoC is also able to write
overlays into the LPDDR4x so that
they can be merged with the output
video stream.

Modern CMOS image sensors
(CISs) have several modes of
operation and can be configured
to provide on-chip processing,
and several different output
formats and clocking schemes.
This configuration is normally
provided over an I²C interface.
In the Efinix reference design,
this I²C communication to the
MIPI cameras is provided by the
Sapphire SoC RISC-V processor.

Integration of the RISC-V processor
within the Titanium FPGA reduces
the overall size of the final
solution as it removes the need to
implement both complex FPGA
state machines that increase
design risk, as well as external
processors that add to the BOM.

Inclusion of the processor also
enables support with additional IP
to communicate with the MicroSD
card. This enables real-world
applications where images may
be required to be stored for later
analysis.

Overall, the architecture of the
Ti180 reference design is optimized
to enable a compact, low-cost, yet
high-performance solution that
allows developers to reduce BOM

The Ti180 M484 reference design clearly
showcases the capabilities of Efinix FPGAs
and the Ti180 in particular. The design
leverages several of the unique I/O structures
to implement a complex image processing
path that supports several incoming MIPI
streams.

Why and how to use Efinix FPGAs for AI/ML imaging – Part 2: Image capture and processing

The Ti180 M484-based
reference design

Conceptually, the reference design
(Figure 1) receives images from
several Mobile Industry Processor
Interface (MIPI) cameras, performs
frame buffering in the LPDDR4x,
and then outputs the images
to a High Definition Multimedia
Interface (HDMI) display. An FPGA
Mezzanine Card (FMC) and four
Samtec QSE interfaces on the
board are used to provide the
camera inputs and HDMI output.

The FMC to QSE expansion card
is used in conjunction with the
HDMI daughter card to provide the
output video path, while three QSE
connectors are used to interface
with the DFRobot SEN0494 MIPI
cameras. If multiple MIPI cameras
are not available, a single camera
can be used by looping back the
single camera channel to simulate
additional cameras.

At a high level, this application
may appear to be straightforward.
However, receiving multiple high-
definition (HD) MIPI streams at
a high frame rate is challenging.
This is where FPGA technology
is beneficial because it allows
designers to utilize multiple MIPI
streams in parallel.

The architecture of the reference
design leverages both parallel and
sequential processing structures
with the FPGA. The parallel
structures are used to implement
the image processing pipeline,
while a RISC-V processor provides
the sequential processing used for
the FPGA look-up tables (LUTs).

The image processing pipeline
can be split into two elements
within many FPGA-based image
processing systems, namely the
input and output streams. The
input stream is connected to the
camera/sensor interface, and
processing functions are applied

to the sensor’s output. These
functions can include Bayer
conversion, auto white balance, and
other enhancements. In the output
stream, the image is prepared for
display. This includes changing
color spaces (e.g., RGB to YUV) and
post-processing for the desired
output format, such as HDMI.

Often the input image processing
chain operates at the sensor pixel
clock rate. This has different
timing to the output chain, which
is processed at the output display
frequency.

A frame buffer is used to connect
the input to the output processing
pipeline, which is often stored
in external high-performance
memory, such as LPDDR4x. This
frame buffer decouples between
the input and output pipelines,
allowing access to the frame buffer
via direct memory access at the
appropriate clock frequency.

The Ti180 reference design uses a
similar approach to the concepts
outlined above. The input image
processing pipeline implements
a MIPI Camera Serial Interface
2 (CSI-2) receiver intellectual
property (IP) core, which is built
upon the MIPI physical layer
(MIPI D-PHY)-capable input/
output (I/O) of the Titanium FPGA.
MIPI is a challenging interface
because it uses both single-ended
and differential signaling on the
same differential pair, in addition
to low-speed and high-speed
communications. Integrating the

 Figure 2. Sample images output from the
reference design. Image source: Adam Taylor

https://www.digikey.com/en/supplier-centers/analog-devices
https://www.digikey.com/en/products/detail/analog-devices-inc/EVAL-ADV7619-7511/4866768
https://www.digikey.com/en/supplier-centers/samtec
https://www.digikey.com/en/products/filter/rectangular-connectors/arrays-edge-type-mezzanine-board-to-board/308?s=N4IgTCBcDaIIoGUCiIC6BfIA
https://www.digikey.com/en/products/detail/efinix-inc/EFX-FMC-DDR3-GPIO/17084465
https://www.digikey.com/en/supplier-centers/dfrobot
https://www.digikey.com/en/products/detail/dfrobot/SEN0494/15283065

54 55
we get technical

cost through system integration.

One of the key benefits of reference
designs is that they can be used to
kickstart application development
on custom hardware, enabling
developers to take critical elements
of the design and build off it with
their needed customizations. This
includes the ability to use Efinix’s
TinyML flow to implement vision-
based TinyML applications running
on the FPGA. This can leverage
both the parallel nature of FPGA
logic and the ability to easily add
custom instructions into RISC-V
processors, allowing the creation of
accelerators within the FPGA logic.

Implementation

As discussed in Part 1, the Efinix
architecture is unique in that it
uses eXchangeable Logic and
Routing (XLR) cells to provide both
routing and logic functionality. A
video system such as the reference
design is a mixed one that is both
logic and routing heavy: extensive
logic is required to implement the

image processing features, and
extensive routing is needed to
connect the IP cells at the required
frequencies.

The reference design uses
approximately 42% of the XLR cells
within the device, leaving ample
room for additions, including
custom applications such as edge
ML.

Table 2: Snapshot of the interface and
I/O resources used. Image source: Adam
Taylor

Table 3: Timing implementation against the constraints
shows the potential of the Titanium FPGA XLR structure to
reduce the possible routing delay, thereby increasing design
performance. Image source: Adam Taylor

Figure 5. Clock constraints for the reference design.
Image source: Adam Taylor

Usage of the block RAM and digital
signal processing (DSP) blocks is
also very efficient, using only 4 of
the 640 DSP blocks and 40% of the
memory blocks (Table 1).

At the device IO, the DDR interface
for the LPDDR4x is used to provide
the application memory for the
Sapphire SoC and the image frame
buffers. All of the device-dedicated
MIPI resources are utilized along
with 50% of the phase lock loops
(Table 2).

The general purpose I/O (GPIO)
is used to provide the I²C
communications along with several
of the interfaces connected to
the Sapphire SoC, including NOR
FLASH, USB UART, and SD card.
The HSIO is used to provide the
high-speed video output to the
ADC7511 HDMI transmitter.

One of the crucial elements when
designing with FPGAs is not only
implementing and fitting the design
within the FPGA, but also being
able to place the logic design within
the FPGA and achieve the required
timing performance when routed.

Long gone are the days of single-
clock-domain FPGA designs. There
are several different clocks, all
running at high frequencies in the
Ti180 reference design. The final
timing table shows the maximum
frequencies achieved for the clocks
within the system. This is where the

Core Resources

Inputs 1264 / 3706

Outputs 1725 / 4655

XLRs 73587 / 172800

Memory Blocks 508 / 1280

DSP Blocks 4 / 640

Periphery
Resource

DDR 1 / 1

GPIO 22 / 27

HSIO 20.0 / 59

JTAG User TAP 1 / 4

MIPI RX 4 / 4

MIPI TX 4 / 4

Oscillator 0 / 1

PLL 4 / 8

Timing

Worst Negative Slack (WNS) 0.182 ns

Worst Hold Slack (WHS) 0.026 ns

i_pixel_clk 211.909 MHz

tx_escclk 261.370 MHz

i_pixel_clk_tx 210.881 MHz

i_sys_clk 755.858 MHz

i_axi0_mem_clk 130.429 MHz

i_sys_clk_25mhz 234.577 MHz

i_soc_clk 187.231 MHz

i_hdmi_clk 233.918 MHz

mipi_dphy_rx_inst1_WORD_
CLKOUT_HS

273.973 MHz

mipi_dphy_rx_inst2_WORD_
CLKOUT_HS

262.881 MHz

mipi_dphy_rx_inst3_WORD_
CLKOUT_HS

204.290 MHz

mipi_dphy_rx_inst4_WORD_
CLKOUT_HS

207.598 MHz

mipi_dphy_tx_inst1_SLOWCLK 201.979 MHz

mipi_dphy_tx_inst2_SLOWCLK 191.865 MHz

mipi_dphy_tx_inst3_SLOWCLK 165.235 MHz

mipi_dphy_tx_inst4_SLOWCLK 160.823 MHz

jtag_inst1_TCK 180.505 MHz

requested timing performance can also be seen in the
constraints (Figure 5), which have a maximum clock
frequency of 148.5 megahertz (MHz) for the HDMI
output clock.

Timing implementation against the constraints shows
the potential of the Titanium FPGA XLR structure as it
reduces the possible routing delay, thereby increasing
design performance (Table 3).

Conclusion

The Ti180 M484 reference design clearly showcases
the capabilities of Efinix FPGAs and the Ti180 in
particular. The design leverages several of the
unique I/O structures to implement a complex image
processing path that supports several incoming MIPI
streams. This image processing system operates
under the control of a soft-core Sapphire SoC, which
implements the necessary sequential processing
elements of the application.

Why and how to use Efinix FPGAs for AI/ML imaging – Part 2: Image capture and processing

Table 1: Resource
allocation on the Efinix
architecture shows only
42% of the XLR cells are
used, leaving ample room
for additional processes.
Image source: Adam
Taylor

56 57
we get technical

Powering the Edge: the
evolution of AI from digital
to neuromorphic systems
for ultra-low power
performance

compute’ can dramatically cut
the power consumption for edge
applications. The chip, built on
a 12nm process at TSMC, has
been benchmarked at 480frame/s
handling YOLO AI video analysis
on 16 HD streams simultaneously
for embedded security camera
applications.

The Axelera Metis chip is now on
M.2 boards for easy integration
with controllers and Hailo has
been working with Raspberry Pi on
its Pi 5 AI Kit. This brings access
to the Hailo 8 AI accelerator to
both professional and enthusiast
creators for home automation,
security and robotics based on the
Raspberry Pi 5 board.

The AI Kit is designed for the
Raspberry Pi 5 and uses the M.2
HAT+ connection to add the Hailo-
8L M.2 AI acceleration module.
This provides 13 TOPS of edge AI
inference for computer vision and
other edge AI applications.

The key for developers is that the
accelerator is fully integrated with
Raspberry Pi’s camera software
stack and supports numerous out-
of-the-box AI applications through
Hailo’s software suite and model
zoo.

This enables Raspberry Pi’s
industrial customers to integrate
AI into high-performance
solutions that are extremely cost-
effective and power-efficient. For
enthusiasts, the AI Kit provides an
accessible way to enhance their
creative projects with AI.

 Figure 1: An Edge AI evaluation
board from Infineon Technologies

There are many types of machine
learning. AI implemented at the
Edge of the network and embedded
into devices is bringing significant
advantages in performance and
power consumption.

But there are also many other
types of AI and machine learning
algorithms being used in all kinds
of different places, not just the data
centre. The technology has been
evolving from digital deep neural
networks (DNN) and convolutional
neural networks (CNNs) to
transformer networks.

At the same time some of these
embedded AI chips are using
analog approaches for more
performance at much lower power,
particularly for processing signals
from sensors locally without having
to send the data to the Cloud.

All these digital and analog
technologies are also coming

a warehouse or person monitoring
in the smart home.

One of the challenges is that data
from sensors has a lot of zeros.
This sparsity of data is a major
challenge for digital AI chips, which
previously have had to process
data whether it is a 0 or a 1. The
latest designs tackle this sparsity
head on, reducing the amount of
processing required and so the
amount of energy used.

Femtosense in the US for example
has designed an AI accelerator that
is optimised for sparse networks,
both reducing the amount of data
and operating directly on the
compressed data flow. This allows
the AI framework to fit into memory
on the chip, with 1Mbit of SRAM
available in the first generation chip,
slashing the power consumption of
the edge AI operations.

Building the chip on a 22nm fully
depleted silicon on insulator (FD
SOI) process also helps reduce the
power consumption even further.
Rather than putting the chip down
on a PCB it has been combined
with a 40nm microcontroller in
the same package to make it even
easier for engineers to use without
it being too expensive.

There are quite a few accelerators
for all kinds of applications.
Hailo and Ambarella are seeing
success in driver safety systems,
and self-driving cars and trucks,
while Axelera has developed an
architecture that handles the AI
models in memory. This ‘in memory

together to provide lower power
and more performance.

Image recognition and computer
vision that has been a stalwart
application of AI, reliably identifying
defects on the production line at
speeds beyond the human eye. This
AI capability is moving further to
the Edge of the network, down to
sensors in the field.

Embedded microcontrollers
from STMicroelectronics, NXP
Semiconductors, Renesas
Electronics, Infineon Technologies
and Analog Devices have all kinds
of different types of digital AI
accelerator blocks alongside their
CPU cores, often dedicated to
particular applications, whether
that’s refining sensor data,
correcting for errors or pattern
recognition for images for spoken
words.

Embedded algorithms are moving
from digital signal processing
(DSP) to CNNs to transformers for
object recognition and detection
and pose detection, whether
that’s for fault inspection on a
production line, shelf monitoring in

Contributed By DigiKey’s
European Editors

58 59
we get technical

Syntiant is also adding in AI
accelerators for handling
sensor data. Its Neural
Decision Processors (NDPs)
are specifically designed to run
deep learning models, providing
100x the efficiency and 10/30x
the throughput of existing low-
power microcontrollers. These
NDPs can be used for acoustic
event detection for security
applications to video processing in
teleconferencing and equip almost
any device with real-time data
processing and decision making
with near-zero latency and without
the need for libraries or compilers.

Analog Edge AI

These are all digital AI
implementations, but as every
engineer knows, there is often
another way.

One increasingly popular approach
is neuromorphic, or spiking, AI.
Neuromorphic is replicating

the structure of the brain, with
interconnected neurons. When a
signal is detected, a spike of data
propogates thorough the network.
These spiking networks are much
lower power as they only use the
neurons in the path.

These can be used for always
on audio detectors in chips from
companies such as POLYN,
or an image processor from
Prophesee which is teamed with
the Akida spiking neural network
from Brainchip as IP that can be
integrate into other chips.

POLYN in Cambridge, UK,
developed its Neuromorphic Analog
Signal Processing (NASP) to handle
any type of sensor and add all
kinds of edge AI algorithms. The
neurons in the chip are neurons
are physically implemented as an
analog circuitry elements according
to the mathematical simulation of
a single neuron, and optimised for
TinyML algorithms.

TinyML cuts down the amount of
data that needs to be processed
with various techniques such as
embeddings. An embedding is a
function that can map a discrete
list of values into a continuous
vector to be processed by an edge
AI engine and is easier to train.

This allows the AI computations
can be performed directly on the
device and do not require users to
send data to the cloud or a remote
server.

The NASP chips are true Tiny AI

implementations that improve
latency and power consumption,
and enable inference computations
directly on devices like wearables,
IoT sensors and more, increasing
their functionality but also
improving users’ privacy as the data
stays on the device.

Polyn has various implementations
for its analog AI, handling vibration
data to extract useful data from
a sensor or to watch for and
recognise a wake word or for
voice control. Algorithm-based
data compression does not work
for noisy signals because of the
fundamentally linear aspect of
algorithms. Neural networks on
the other hand can extract useful
information even from very noisy
data, due to a non-linear way they
process data.

Some deep neural network
architectures such as NASP prove
to be exceptionally well suited for
addressing vibration monitoring
challenges.

Dutch neuromorphic AI chipmaker
Innatera has combined an ultra-

low-power spiking neural network
engine and a custom 32bit
microcontroller core using the open
RISC-V instruction set architecture
(ISA) with 384 KB of embedded
SRAM memory. This creates a
single chip that processing sensor
data quickly and efficiently with
power consumption under 1mW.
This is similarly being used for
signal processing and pattern
recognition tasks using spiking
neural networks alongside DNNs
and conventional processing in the
same device. All of this fits into
a 2.16mm x 3mm chip in a 35 pin
wafer scale package

There is also a key trend to
combining analog neuromorphic AI
and digital AI technologies.

The first generation of the Akida
neural spiking processor developed
by Brainchip has been evaluated
by NASA for handling sensors on
space missions, and the second-
generation now includes Temporal
Event Based Neural Nets (TENN)
spatial-temporal convolutions that
supercharge the processing of raw

 Figure 2: Combining a sparse neural
network accelerator with an ARM
microcontroller in a single package

 Figure 4: The Syntiant neural decision
processor

 Figure 5: The NASP chip from POLYN

time-continuous streaming data,
such as video analytics, target
tracking and audio classification.
This can boost the analysis of MRI
and CT medical scans for vital
signs prediction, and time series
analytics used in forecasting, and
predictive maintenance to highlight
when equipment is going to fail so
that repairs can be scheduled..

 The TENNs allow for radically
simpler implementations by
consuming raw data directly
from sensors. Like the Polyn
and Innatera approaches, this
drastically reduces model size
and operations performed, while
maintaining very high accuracy.
This can shrink design cycles and
lower the cost of development
for customers such as Renesas
Electronics.

But Brainchip has also added
in support for digital Vision
Transformers (ViT) acceleration
for image classification, object
detection, and semantic
segmentation. This allows it to
self-manage the execution of
complex networks like RESNET-50
completely in the neural processor
without CPU intervention and
minimizes system load.

The Akida IP platform can
also learn on the chip, allowing
continuous improvement and data-
less customization that improves
security and privacy. This is being
used in secure, small form factor
devices like hearable and wearable
devices, that take raw audio input,
medical devices for monitoring
heart and respiratory rates and
other vitals that consume only
microwatts of power.

This can scale up to HD-resolution
vision solutions delivered through
high-value, battery-operated or
fanless devices enabling a wide
variety of applications from
surveillance systems to factory
management and augmented
reality to scale effectively.

All of this marks the combination
of the spiking and digital neural
networks, with a focus on ultra
low power. This combination of
technologies is potentially a key
step forward for scaling up the
size and performance of all kinds
of embedded AI systems without
driving up the power consumption.

Powering the Edge: the evolution of AI from digital to neuromorphic systems for ultra-low power performance

Figure 3: The Hailo 8 is the first
AI accelerator to be added to the
Raspberry Pi 5 single board computer

Figure 6: The Akida 1000 neuromorphic
AI IP

60 61
we get technical

All about AI/machine
learning

Ants are fascinating creatures.
When they leave their nest in
search of food, they initially wander
randomly, leaving pheromones
along their path. Once an ant
finds food, it returns to the nest,
reinforcing the trail with more
pheromones. Other ants follow this
strengthened trail and continue to
add pheromones, making it even
more prominent. Occasionally,
ants wander off the trail and if
they discover a shorter path to the
food, the trail will gradually shift to
follow this new route. Over time,
this process transforms a weak and
meandering trail into a streamlined

ant superhighway.

The process of how ants explore
their environment is similar to how
brains learn, and machine learning
algorithms operate: They start by
exploring many possibilities; they
identify successful outcomes; and
then they optimize and reinforce
pathways to make the connections
more efficient over time.

This article covers how machine
learning works, its relation to the
ant analogy, and encourages you to
consider using machine learning in
your next project!

Input Raw Data Outputs

Interpretation Algorithms Processing

Machine learning basics

When laymen hear the term
artificial intelligence, their thoughts
often turn to the intelligent,
personified machines and
humanoid robots often seen in
movies and television – machines
capable of completing any task,
who inevitably turn on their creators
in a bid to take over the world.

Reality is quite different –
machines are only able to learn
one task at a time, and once their
training stops, their ability to evolve
stops with it. Machine learning
‘intelligence’ is restricted to the
completion of a single task and
is frozen in time. For example, a
camera trained to detect vehicle
license plate numbers, can only
ever detect license plate numbers.
It cannot ‘evolve’ to edit the
grammar in written documents.

What is machine learning?

Machine learning is one type of
artificial intelligence that uses
advanced algorithms and a trove of
data to teach computers to make
predictions. Unlike the omnipotent
robots of science fiction, machine
learning models can only
perform specific, isolated tasks,
such as image recognition and
classification, language translation,
or trend detection. There are
three types of machine learning:
supervised learning, unsupervised
learning, and reinforcement
learning.

Types of learning

Supervised learning
Supervised learning involves pairing
known inputs with known outputs.
For example, how do computers
learn to recognize handwritten
digits when each person’s
handwriting is unique?

The MNIST database (http://yann.
lecun.com/exdb/mnist/) contains
70,000 examples of handwritten
digits (0-9) collected from the
National Institute of Science and
Technology Standard Reference
Data Special Database 1 and 3.
Researchers collected hundreds
of thousands of handwritten
characters and meticulously
labeled each one with the correct
digit. This dataset is used to train
computer models to automatically
recognize digits.

By using this dataset, computer
scientists can train and test their
algorithms with known correct
answers. This approach ensures

that the algorithm learns accurately
without deviating from the correct
path, which is the essence of
supervised learning.

Unsupervised learning
Unsupervised learning algorithms
identify patterns, similarities, and
differences in large datasets that
might not be visible to humans.
Mathematicians discovered long
ago how to determine correlation
between a single dependent and
independent variable, and even
how to use advanced statistical
techniques to find a relationship
between two or three independent
and one or two dependent
variables. But sometimes the
relationship between the variables
is obfuscated by hidden variables.
For those cases, machine learning
takes over in order to determine
hidden relationships.

By feeding the raw input data
into the model and letting the
algorithms experiment, it is
possible to determine relationships,

Figure 1: The image illustrates unsupervised learning. In unsupervised
learning, a large assortment of data is fed into an algorithm whose job it
is to find patterns, coincidences, and anomalies. The algorithm sorts the
data in a manner that suits it.

Contributed By DigiKey’s
Mark Hughes

https://www.nist.gov/
https://www.nist.gov/
https://www.nist.gov/

62 63
we get technical

groupings, and outliers.

The image above illustrates
unsupervised learning. In
unsupervised learning, a large
assortment of data is fed into
an algorithm whose job it is to
find patterns, coincidences, and
anomalies. The algorithm sorts the
data in a manner that suits it.

As an example: Every day,
newspapers around the world
produce articles on a wide variety
of topics. These articles are often
published online, which makes
them available as raw input
data for search engines. Using
unsupervised learning, it is possible
for Google and other websites to
analyze the data and cluster similar
articles together for a reader.

Reinforcement learning
Reinforcement learning is a
process where positive feedback
is given after a desired action
to increase the likelihood of it
happening again, and negative
feedback is provided to decrease

the likelihood of an undesirable
action being repeated.

Learning piano
Imagine a student learning to
play a piano, but the piano has
all its strings cut. Without sound
from key presses, there is no
feedback, making it impossible
for the student to know if they
played the correct or incorrect key.
Consequently, no reinforcement
learning can take place. Now,
picture the same student with a
properly tuned piano. Each key
press produces a sound. If the
sound matches the student’s
expectations, it serves as positive
reinforcement. If the sound is
unpleasant or unexpected, it acts
as negative reinforcement.

Ant traIls
An ant that follows a pheromone
trail to a food supply will strengthen
the trail by depositing more
pheromones. If the trail leads to
an exhausted food supply, the ants
will wander elsewhere and the

pheromones will dissipate. With a
higher pheromone concentration,
there is an increased likelihood
that more ants will follow. With
fewer pheromones, the lower the
likelihood that ants will follow that
trail.

Early machine learning
In the mid-1990s, computer
scientists developed TD-
Gammon, an algorithm that
learned to play backgammon
through reinforcement learning.
Initially, it made random moves
and received feedback based on
the outcomes of those moves.
Actions that increased the game’s
expected score received positive
reinforcement by increasing a
reward variable, while actions that
decreased the expected score
received negative reinforcement
by decreasing the reward variable.
The algorithm was programmed to
maximize the cumulative reward.
Through trial and error, it gradually
learned which decisions maximize
the reward and win the game!

Reinforcement review
This basic process of positive
and negative reinforcement –
increasing or decreasing the
likelihood of a behavior – is how
humans, insects, and machines
learn. Brains make neuronal
connections, ants make trails, and
computers increase or decrease
the values of variables.

It is important to train using data
that is appropriate for the task and
free of unnecessary information
when possible. This approach
reduces the computational
complexity of the training process.

Relation to machine learning
Machines interact with the world
around them through a series of
inputs and outputs. The inputs
often come from sensors or data
files, while the outputs can be
screens, actuators, or data files. By
training models on data obtained
from sensors, you can develop
systems that understand and
respond to their environments in
near real-time. For instance, in
autonomous driving, sensor data

helps vehicles navigate and make
decisions safely and efficiently. In
personalized medicine, machines
analyze patient data to allow
doctors to better diagnose and
treat patients.

The ability to process and learn
from diverse data sources is crucial
for advancements in machine
learning.

Real-world applications of
machine learning

Algorithms need data, and there are
a wide number of sensors available
for use today. Often the outputs of
a variety of sensors are combined
– a process called sensor fusion.
Sensor fusion combines the data
from multiple sensors in different
proportions to create a dataset
product that is greater than the
sum of its parts. For example,
smartphones combine data from
GPS, accelerometers, gyroscopes,
magnetometers, and the camera
to determine where it is in space.
The result allows for a variety of
augmented reality experiences,
such as Pokemon Go!, or Google
Maps indoor navigation.

In automobiles
Modern automobiles have
dozens of sensors, including
transmission-speed, wheel-speed,
steering-angle, suspension-height,
tire-pressure, accelerometers,
yaw-rate, microphone arrays, and
more. I chose to list these sensors
in particular because a company
called Tactile Mobility fuses the
data from these sensors to produce
a very detailed picture of road
conditions. Application specific
algorithms are able to analyze all
of the sensor data coming out of
a vehicle and determine which
vehicle-type produced the data,
what condition the tires are in, what
road the vehicle was traveling on,
and even the specific lane of travel
– all without using GPS.

In healthcare
Healthcare combines several data
points together to provide a picture
of patient health. A patient’s vitals
include: blood pressure, pulse rate,
respiratory rate, and temperature.
Other data, such as the results of
a Complete Blood Count (7 tests)
and a Comprehensive Metabolic
Panel (14 tests) can identify which

Just right! Overfitting

Figure 2: Neural networks are often
shown as a diagram similar to the
one pictured above. Data arrives
and is stored in an input layer (the 4
neurons shown on left). From there,
there are ‘hidden-layers’ that form
connections to output layers. In
this image there are two sets of
6 neurons in the hidden layers,
and two neurons in the output
layer. The training task determines
how input layers are ultimately
connected to output layers through
the hidden layers

Figure 3: An example of a model that’s ‘Just right!’ and Overfitting

All about AI/machine learning

64 65
we get technical

organs might be functioning poorly
and might require further testing.
Doctors learn to interpret the data
and generate results after years of
intense education and practice. But
researchers also train computers
to fuse the data from the various
sources and produce a list of likely
causes of an illness.

As another example, amputees
today have more options than the
peg-legged pirate of centuries
past. Modern prosthetics now
can include accelerometers,
gyroscopes, magnetometers,
pressure sensors, force sensors,
and electromyography (muscle)
sensors to provide enhanced
capabilities and natural movement.
The data from the sensors allows
a prosthetic to know where it is in
space and interact with the nervous
system without having to merge
with the nervous system.

Looking forward
Now, it is time to learn how neural
networks work, and hopefully
demystify the process enough that
you’ll be confident enough to try it
out on your own.

The learning process

Machine learning is an involved

process that requires significant
amounts of data and processing
power. The steps include: data
collection, error detection, and
deployment.

Neural networks, a type of
processor, feed sensor data into
an input layer. The input layer then
passes the data to a series of
hidden layers containing neurons,
and eventually to the output layer.
The computationally intensive part
of training involves determining the
values of the individual neurons.

Neural networks are often shown
as a diagram similar to the one
pictured above. Data arrives and is
stored in an input layer (the 4 blue
neurons shown on left). From there,
there are multiple
‘hidden-layers’ that
form connections to
output layers. In this
image there are two
sets of 6 neurons in
the hidden layers,
and two neurons
in the output layer.
The training task
determines how
input layers are
ultimately connected
to output layers
through the hidden
layers

Data collection

Substantial amounts of data
are required to properly train a
model. In the handwriting example
mentioned at the start of the article,
sixty-thousand of the seventy-
thousand handwritten digits were
used to train a detection algorithm.

Data preprocessing

Computer scientists enjoy saying
“Garbage in equals Garbage out.”
Which means the data fed into
an algorithm will impact its later
performance. For this reason, if
you’re training an algorithm to
detect handwritten digits, you
cannot accidentally include a few
hundred photographs of your cat or
newborn child.

You must evaluate the data for
missing values, outliers, duplicates,
etc. to ensure that the best possible
dataset is fed to the computer

for training. Normalizing the data
provides mathematical reductions
in the computational complexity
and reduces the amount of required
memory since all values will fall in a
known range.

Finally, split the data into two
batches - one large batch for
training the algorithms, and a
second smaller batch for testing
the quality of the training.

Training and deployment
resources

Training often requires a
substantial number of addition and
multiplication calculations and a
lot of available memory. At times
you can train a model at home
on powerful computing devices
such as the NVidia Jetson series
of Single-Board-Computers or
graphics cards, and other times
training involves server farms at
data-centers. Training will take
anywhere between a few hours and
a few months depending on the
complexity of the model and the
available processing power.

One reason training is so
computationally expensive
compared to deployment is
the sheer volume of data used
in training as well as the need
for both forward and backward
propagation to determine the value
of each neuron. Once training
determines the value of each
neuron, deployment is far more
straight-forward. Remembering the

ant analogy, lots of ants are initially
needed to find a food source, many
more are needed to refine and
streamline the trail, but once the
trail is established, a single ant can
mindlessly follow it without much
effort.

Training tips

For neural networks, the data has to
be sufficiently shuffled to properly
train. If you were to feed a digit-
recognition model six-thousand
images of the number 0, followed
by six-thousand images of the
number 1, then 2, etc. the neural
net would not properly form, and no
useful predictions could be made.
Proper shuffling ensures that the
model learns to generalize from the
data rather than memorizing the
order of the inputs.

The scatterplots above are often
used to illustrate the goal of
training. Algorithms attempt to find
models that fit the data reasonably
well without over-training.
Overtraining means the model will
detect the training data with high
accuracy, and the testing data with
very low accuracy.

It is important not to over-train
a model. There is always a bit
of statistical variation, gaussian
noise, or error in the datasets. A
properly trained model will ignore
the noise of the training dataset. An
overtrained model will learn that the
noise is important, and part of the
dataset. As an example, imagine
you’ve got a list of temperatures,

measured at noon at a single
location over the course of a year.
A properly trained dataset will fit
a smooth sinusoidal curve to the
scatterplot, while an overtrained
dataset will resemble a scatter plot
connected with sharp lines.

Summary

Machine learning is a powerful
tool, but it is task specific and
lacks the general intelligence seen
in Science Fiction movies and
fantasy novels. The models used
to generate outputs are dependent
on the quality of the training
process and are not capable of
generalization to new areas - a
model trained to correct grammar
cannot be used to identify license
plate numbers in security footage.
In contrast, the human brain has
no such limitations - its ability to
identify, abstract, and generalize
the world around it is seemingly
boundless. The hopes of having an
Android companion are well beyond
the limits of technology for the
foreseeable future.

In recent years, advances in
computers have made training
and deploying models accessible
and affordable to everyone,
democratizing AI for everyone with
even basic programming skills. To
learn more, please see the excellent
work done by our very own Shawn
Hymel here at Digikey.com!

Machine learning is a powerful tool, but
it is task specific and lacks the general
intelligence seen in Science Fiction movies
and fantasy novels.

All about AI/machine learning

66

